

IKEBANA

Reducing Selectivity Dimensions with Minimal Impact on Plan Bouquet

Adarsh Patil – CSA

Pradeep Bansal – SSA

Outline

Introduction
Challenges
Problem Framework
Ikebana Approach
Ikebana Algorithm
Experiments
Conclusion
Future Work

Introduction

- Statistical selectivity estimation of predicates researched for several decades outdated
- Bouquet Based approach for query processing Future for Query Processing
- Drawbacks of Plan Bouquet
 - Assumes all dimensions as ESS
 - No techniques available yet for dimension reduction
 - Number of plans increase exponentially as ESS increases
 - High compile time overhead
- Proposed new approach for dimension reduction with bounds IKEABANA

Challenges

Research based project
No existing literature
Exponential search space
Institutive approaches suffer difficultly in

establishing sub-optimality bounds

Problem Framework

- One dimension reduction at a time in the given n-dimension ESS
- "HyperPlane based reduction"
- Minimum and Maximum Costs for the Ikebana bouquet in reduced ESS C' $_{\rm min}$ and C' $_{\rm max}$
- Minimum and Maximum Costs for the original Bouquet are $C_{\rm min}$ and $C_{\rm max}$
- $C_{max} \ll C'_{max}$ AND $C_{min} \ll C'_{min}$ due suboptimal plans
- PIC is sliced into m slices $m = log_r \left[\frac{C'_{max}}{C_{min}} \right]$

Cost of Ikebana Bouquet

$$C_I(q_{k'}) = cost(IC_1) + \dots + cost(IC_{k'}) = \frac{a(r^{k'} - 1)}{r - 1}$$

Cost of Oracle

$$C^*(q_k) = ar^{k-2}$$

Problem Framework contd..

• Theorem – Ikebana Bouquet sub-optimality w.r.t Oracle

$$MSO_I \leq \frac{\rho r^{\delta+2}}{r-1}$$

• **PROOF**
-> From previous result we get
$$SO_I \leq \frac{\frac{a(r^{k'}-1)}{r-1}}{ar^{k-2}}$$

-> Execution contour of Ikebana Bouquet is higher than that of Oracle

-> Substitute k' = k + δ where δ >= 0

$$SO_I \leq \frac{a(r^{k+\delta}-1)}{(r-1)(ar^{k-2})} = \frac{r^{\delta+2}}{r-1} - \frac{r^{2-k}}{r-1} \leq \frac{r^{\delta+2}}{r-1}$$

Problem Framework contd..

• Since the previous expression is independent of k we get

 $MSO_I \le \frac{\rho r^{\delta+2}}{r-1}$

where $\rho = -$ | reduced POSP | for 2 dimension number of plans on densest contour for higher dimension

Construct the iso-cost contour as previously with r = 2

Special case – Sub-optimality w.r.t Plan Bouquet on original ESS

 $MSO_I \le 4\rho 2^{\delta}$

 $\,\circ\,$ NOTE : For δ = 0 we get back original bouquet sub-opt

Solution characteristics

- Minimal impact on final bouquet performance
- Plans and their budgets should cover entire original ESS
- Overlap factor should be minimized
- Increase in budgets for plans should be as less as possible
- Generic approach independent of specificities of SQL like data type, conjunction and join condition
- If possible, reduce number of plans to be executed along with dimension

Algorithm

Algorithm 1 Ikebana Algorithm Algo-Ikebana (planCost, dimension, resolution) for each dimension dfor each hyperplane h in dfor all the points p modulo points on hfind the optimal plan , from the set of plans on h, at point pfind maxDiffPair = (bestCost in reduced ESS, optCost) such that (bestCost in reduced ESS-optCost) is max \forall points find (min,max) cost for all plans on the hyperplane hfind ρ , k' and k using maxDiff, using r = 2, in reduced ESS find $\delta = k' - k$ calculate MSO_h for the hyperplane h given by (7) choose the hyperplane with the least MSO_h return (h^*, MSO_h^*) , (set of plans on $h^*, \min, \max)$

Experiments

- TPC-H Q5
 - 3D ESS
 - 20 x 20 x 20 sampling grid
 - 50 POSP discovered by DB Optimizer
 - Executes in 5.3 seconds [8 core / 64GB machine]
- Exploits parallelism of Dimensions in separate threads (i.e. 3 threads)

Table 1: Ikebana Bouquet for reduced dimension with budgets for TPC-H Q5

Reducing dimension 0 Use selectivity row 5 with MSO 24.0 Here's the Plan Bouquet Plan Number : Min Cost : Max Cost : Overlap Factor 0 : 32047.57154 : 72584.8408 : 1.0 33 : 143221.48723 : 271056.00391 : 28.0 2 : 39315.74284 : 149520.57702 : 9.0 35 : 233741.21581 : 594256.69581 : 2.0 32 : 163600.859204 : 383326.749728 : 58.0 34 : 39316.88784 : 272311.44922 : 2.0 19 : 87052.302142 : 248789.973949 : 2.0 24 : 94099.625582 : 251011.807459 : 5.0 27 : 143187.97099 : 143196.36005 : 60.0 28 : 39316.01034 : 149520.73702 : 38.0 30 : 39316.25034 : 195476.54914 : 14.0	Reducing dimension 1 Use selectivity row 17 with MSO 20.0 Here's the Plan Bouquet Plan Number : Min Cost : Max Cost : Overlap Factor 32 : 163600.859204 : 251555.591209 : 55.0 2 : 32514.30034 : 150061.09922 : 2.0 3 : 81292.75778 : 87647.38038 : 3.0 4 : 81334.47808 : 87647.58788 : 13.0 6 : 81392.754 : 87648.12038 : 6.0 8 : 81501.09053 : 87656.48038 : 5.0 41 : 234086.10581 : 464448.93956 : 4.0 42 : 286990.602609 : 330700.914017 : 27.0 43 : 315186.65456 : 498885.98956 : 103.0 34 : 34713.21409 : 272311.44922 : 2.0 35 : 233741.21581 : 295951.06331 : 5.0 24 : 94054.096832 : 251011.807459 : 2.0 28 : 32786.86034 : 173532.76672 : 15.0 30 : 33062.96784 : 195476.54914 : 7.0	Reducing dimension 2 Use selectivity row 3 with MSO 32.0 Here's the Plan Bouquet Plan Number : Min Cost : Max Cost : Overlap Factor 0 : 32047.57154 : 72582.7633 : 2.0 2 : 39315.74284 : 150061.09922 : 9.0 3 : 81292.75778 : 87688.14913 : 1.0 44 : 32344.90764 : 72583.0533 : 16.0 34 : 39316.88784 : 272311.44922 : 2.0 46 : 32654.04994 : 72583.5583 : 11.0 15 : 87051.727142 : 248841.642699 : 4.0 35 : 233741.21581 : 594256.69581 : 2.0 24 : 94099.625582 : 384929.793478 : 6.0 47 : 34450.56499 : 72584.56205 : 21.0 28 : 39316.01034 : 173532.76672 : 40.0 30 : 39316.25034 : 195476.54914 : 14.0
--	---	---

Experiments – TPC-H, Q5

Figure 2: Min/Max MSO bounds for Reducing dimension 0 on TPC-H Q5

Figure 1: Min/Max MSO bounds for Reducing dimension 1 on TPC-H Q5

Experiments – TPC-H, Q8(4D, plans 324, resolution 20)

Min/Max MSO bounds for reducing Dimension 0 Cost 10 11 12 13 14 15 16 17 18 19 Selectivity Rows

Min/Max MSO bounds for reducing Dimension1

Min/Max MSO Bounds for reducing dimension 3

Conclusion

- Successfully quantified the impact of reducing dimensions
- Established concrete bounds on sub-optimality induced due to dimension reduction
- Improves bouquet performance by reducing run time due to reduction in plan density and also in ESS dimensions
- Reduces compile time cost for Plan Bouquet as the number of dimensions to explore are reduced.

Future Work

 Iterative vs combinatorial approach for dimension reduction

Impact of overlap factor

Technique using less number of FPC calls

ARIGATO THANK YOU...