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1 Introduction

In the pretext of the Plan Bouquet style of query execution proposed ear-
lier [Anshuman and Jayant2014] compile time selectivity estimation process was
eliminated and replaced by a series of cost limited plan executions at run time
to ”discover” selectivity of predicates. Statistical selectivity estimation of pred-
icates has been researched for several decades and several techniques have been
proposed but all of these suffer from well known drawbacks. Query processing
without selectivity estimation was first explored and analyzed in the Bouquet
paper and showed theoretical guarantees on sub-optimality. However to make
the Bouquet Approach more viable we need to identify the ESS(Error-Prone
Selectivity Space) as a first step. The bouquet algorithm performance is predi-
cated and executed on this ESS Space. The number of plans and budgeted costs
for execution increase exponentially with the number of dimensions in the ESS.
To make bouquet more practical, robust, implementable in OLTP systems and
bridge the gap between traditional query processing that is done with selectivity
estimation, we need to reduce the number of dimensions along which the bou-
quet is executed. Also, from real world queries as literature has time and again
proven that predicates are not always independent and the AVI property is often
violated. For example common scenarios are (i)Selectivities of the form column
op column can be accurately predicated with current techniques (ii) The join se-
lectivities of PK-FK joins can be estimated accurately if the entire PK-relation
participates in the join. In the process of eschewing selectivity dimension we
need to ,also, consider the impact of it on the performance of the bouquet. In
this work, we define and derive an expression for maximum sub-optimality of
bouquet in the reduced error prone dimensions in comparison with the oracle’s
query execution cost.Further, we propose a parallelized algorithm titled Ikebana
to implement single selectivity-dimension reduction given n dimension ESS and
show results from TPC-H Q5 having 3D ESS.
The rest of this paper is divided as follows. Section 2 disambiguates and ac-
curately defines the framework of the problem. Section 3 gives an algorithm
for single selectivity dimension reduction. Section 4 defines and derives the
bounds and analysis of MSO for the reduced bouquet execution. Section 5
shows experimental results on the TPC-H benchmarks queries for dimension
reduction. Section 5 concludes the work, draws inference and proposes future
enhancements.
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2 Problem Framework

2.1 Orthogonal Techniques

In this section we first disambiguate some of the misconceptions of the problem
statement, then clearly define the problem and describe the approach we have
followed to solve it in rest of the report. The problem is analyzed from the
perspective of performance impact of selectivity dimensions.
Given the cost of execution at each point in ESS,one can come up with a func-
tion approximation describing cost in terms of ESS as the parameters for the
function. This can be done using the well studied algorithms for function ap-
proximation. Once such a function has been constructed, we can find the partial
differentiation(p.d.) w.r.t. each dimension and the one having the lowest value
or falling below some given threshold can be eliminated. Problems using this
approach are 1)It is an approximation technique which is no better than ear-
lier statistical techniques for estimating selectivities. 2)Finding/Proving MSO
bounds for its impact on bouquet would have been difficult.
Secondly, one can also look at all the predicates and analyse the data types
of attributes such as INT, VARCHAR, BLOB, FLOAT and their conjunctives
such as AND, OR, BETWEEN, LIKE etc. and analyze how a combination of
both affect the selectivity. For example salary < 10000 is one of the predicate
and we know MAX(Salary) = 10000. But this might be difficult to generalize
this approach and does not always yield good results.

2.2 Problem Statement

We now clearly define the concept of redundancy’ of a dimension w.r.t. its MSO
as follows -
Redundant Dimension : A selectivity dimension dk ,from an ESS with dimen-
sions set D = d1, d2, ..., dn,can be said to be a ’redundant’ if the plan bouquet
identified from ESS(D−dk) as well as from ESs(D),gives similar MSO guarantee
when evaluated on ESS(D). Similarly ,redundancy can be defined for a subset
of dimensions (Dk ⊂ D) also. With the above definition in mind,the goal is to
remove the redundant dimension ,which will be referred as dimension reduction,
from the original set of dimensions on ESS.

2.3 Solution Characteristics

Based on the above problem definition and deficiencies of the orthogonal tech-
niques we establish some characteristics for the solution to the dimension re-
duction problem.

1. The POSP and their budgets that are output by Ikebana should cover
every point, i.e. be able to execute every point, in the original non-reduced
ESS.

2. We expect that due to increase in the budgets for each of the POSP, the
plans will cover more points than they are found to be optimal at leading
to overlap of plans regions. Let us illustrate this with an example: Every
point in the ESS has a plan and its cost of execution at that point as a tuple
(P,C). Consider the point R that has least cost for plan P2 and a cost CR2
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in the reduced POSP. The sequence of cost limited bouquet executions in
order of increasing budget are {P1, P2, ....Pk} and corresponding budgets
are {BP1, BP2, ....., BPk}. If the budget for P1 exceeds CR2, plan P1 will
complete execution of point R with a higher sub-optimality than intended.
We call this characteristic as plan overlap

3. The dimension chosen to be reduced should have minimum impact on the
performance of the bouquet and provide robust upper bounds on MSO
induced thereof. This is to minimize the effect of the increase in sub-
optimality for bouquet

4. The approach should be generic, independent of specificities of SQL lan-
guage, or any other, and extend-able to any query predicate or combina-
tion of predicates.

3 Algorithm

We will refer Ikebana Bouquet and also the Algorithm (3) that generates the
plan bouquet for reduced ESS as Ikebana.However the interpretation will be
clear from the context The Ikebana Algorithm finds the redundant dimension
according to the definition given in section 2.2.The algorithm takes as input the
cost of all plans at all points in the grid.Along with the dimension index which
can be reduced , algorithm output is the set of plan in reduced space and their
associated budget.

Algorithm 1 Ikebana Algorithm

Algo-Ikebana(planCost,dimension,resolution)
for each dimension d
for each hyperplane h in d
for all the points p modulo points on h

find the optimal plan , from the set of plans on h, at point p
find maxDiffPair = (bestCost in reduced ESS,optCost)
such that (bestCost in reduced ESS-optCost) is max ∀ points
find (min,max) cost for all plans on the hyperplane h
find ρ , k′ and k using maxDiff , using r = 2, in reduced ESS find δ = k′ − k
calculate MSOh for the hyperplane h given by (7)
choose the hyperplane with the least MSOh return (h∗,MSO∗h,(set of plans

on h∗,min,max))

The algorithm works as follows:
On a fixed dimension d , we find all optimal plans ,fixedHyperPlanePlans, on a
hyperplane of dimension D - 1.Consider fixedHyperPlanePlans as the reduced
set of POSP plans.For all the points on grid we find optimal cost of execution
using only the reduced set of POSP plans.For fixedHyperPlanePlans , C

′

min and

C
′

max , are calculated to find the MSO given by (7).For current fixedHyperPlane
,find ρ and maximum δ = k′ − k ,where k′ is the contour of execution of re-
duced bouquet and k is the contour of actual query location.Hyperplane which
gives the lowest MSO is the best and will be chosen ,along with the optimal
set of plans on it and their min and max budget ,provided the current dimen-
sion,d, is reducible.Dimension d is reduced if it gives the lowest MSO among
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all the minimum MSO found when all dimensions are compared. Each dimen-
sion is checked for reducibility and the one which gives lowest sub-optimality
is eschewed.There is no preset criteria to decide which dimension is to be re-
moved.We find the reduced MSO,given by (7) , after removing each dimension
separately.The dimension which leads to lowest reduced MSO is removed.
The algorithm also outputs overlap factor(for each POSP plans in the reduced
ESS) which is defined as follows: OverlapFactori is defined as the ratio of
number of points at which a plan i executes at run time due to increased bud-
get to the number of points at which plan i is best in reduced ESS,i.e. spill of
plan i at runtime.

Complexity :Time complexity of the proposed algorithm is exponential in
dimension,given by O(rDrD),where r is the resolution of the grid and D is the
original number of dimensions.The reason for this high complexity is that we
have to explore all the possibilities by checking each dimension individually
whether it is reducible.Note that this is only one time process which can be
done at compile time and at run time, Bouquet ,on reduced set of dimensions,
can be used to process query.

4 Ikebana Analysis

In this section we define the sub-optimality of Ikebana Bouquet and derive
an expression for the same.Ikebana Bouquet is essentially the Plan Bouquet
approach but on reduced ESS.We compare Ikebana performance w.r.t. that
of an oracle and as a special case show comparison w.r.t. Plan Bouquet on
original ESS.Once some subset of dimensions have been reduced, Ikebana PIC
curve(in reduced ESS) will be above the Plan Bouquet’s PIC(without reduction
in ESS) curve. Traditional assumptions of PCM holds here as well, i.e. PIC
is an increasing function and also continuous throughout ESS. Minimum and
Maximum costs for Ikebana are denoted by C ′min and C ′max, respectively and
Cmin and Cmax, are minimum and maximum costs , respectively on original
ESS.Now consider the case wherein the isocost steps are organized in a geometric
progression with initial value a (a > 0) and common ratio r (r > 1).PIC is sliced

with m = logr

⌈
C′

max

Cmin

⌉
cuts, IC1, ..., ICm, satisfying the boundary conditions

a/r < Cmin ≤ IC1 and a > Cmin. Sub-optimality of Ikebana, MSOI ,for some
query q which lies on or below the kth contour, w.r.t. the ’oracle’ algorithm
is defined as the ratio of cost of Ikebana,CI(qk′), to the optimal cost ,C∗(qk).
Thus we have

CI(qk′) = cost(IC1) + ...+ cost(ICk′) =
a(rk

′ − 1)

r − 1
(1)

C∗(qk) = ark−2 (2)

We have skipped the full derivation for the costs given above as user can refer
section 3.1 in [Anshuman and Jayant2014]. Note that (1) has k′ and (2) has k
as the index of the contour.That’s because Ikebana executes on reduced POSP
which induces sub-optimality but ’oracle’ algorithm magically knows the actual
query location on original ESS and may not k′ − 2.
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Theorem 1. Given a query Q with multi-dimensional ESS S where S = {d1, ..., ds}
the associated PIC discretized with a geometric progression having common
ratio r , maximum contour plan density ρ for Ikebana ,Cmax and Cmin be the
maximum and minimum cost, respectively on Sr ,where Sr is the reduced space,
Sr = {S \ dk} for some k , after one dimension dk has been reduced.Then the
MSO for Ikebana w.r.t. oracle algorithm is given by

MSOI ≤
ρrδ+2

r − 1
(3)

Proof. Using (1) and (2) and from the definition of MSOI , we get

MSOI =

a(rk
′
−1)

r−1
ark−2

(4)

Let k′ be given as
k′ = k + δ (5)

Using (4) and (5) , we get

MSOI =
a(rk+δ − 1)

(r − 1)(ark−2)
=

rδ+2

r − 1
− r2−k

r − 1
≤ rδ+2

r − 1
(6)

Note that δ depends on the actual query location at run time.
For dimensions >= 2 in reduced ESS , there will be a ρ term in (6) such that

MSOI ≤
ρrδ+2

r − 1
(7)

where ρ is the number of plans in the densest contour of Ikebana.

Note that when original ESS dimension is 1 , ρ = 1 and there is no scope of
dimension reduction

Lemma 1. Taking r = 2 in Theorem 1 , we get

MSOI ≤ 4ρ2δ

Note the presence of 4ρ in the above lemma which is the expression for MSO
for Plan Bouquet as given by Theorem 3 in [Anshuman and Jayant2014].

5 Experiments

We note here that the problem of dimension reduction is embarrassingly par-
allel in both : exploring a given dimension and exploring each HyperPlane
within the dimension(to be reduced) as candidates for reduction and exploit
this observation in the Ikebana implementation. The Ikebana algorithm(given
by Algorithm 1) was implemented in Python2.7 and the source is available for
inspection1.Ikebana forks one thread for each dimension to reduce and explores
this space in parallel reducing the time of exponential execution by several mag-
nitudes. The Ikebana algorithm was run on the TPC-H benchmark query Q5.

1https://github.com/adarshpatil/ESS-Reduction
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This query has 3 ESS dimensions and was sampled for a 20x20x20 grid. The
database optimizer returned 50 POSPs for this ESS. The code was run on a 8
core AMD CPU, 16GB RAM system and the exploration for the above men-
tioned query completed execution in 5.3 seconds. The adjoining figures show
the range of MSO values the bouquet execution will encounter depending on
the point of the query delta values for the reduced POSP in chosen row. As
proposed earlier in section 3 Ikebana executes and chooses the HyperPlane that
gives the least value of MSO.

Based on this, the Ikebana implementation outputs the bouquet plans, min
and max Cost and overlap factor using the Theorem 1

Figure 1: Min/Max MSO bounds for Reducing dimension 1 on TPC-H Q5

Figure 1 above shows the min and max bounds on execution of Plan Bouquet
algorithm for the plans output by Ikebana. The corresponding plan bouquet and
the min, max budgets are seen in Table 1, Column 1 below. We see the graded
difference in scales of bounds between the first/second HyperPlanes (which ex-
tend beyond the scale of the graph) and the following HyperPlanes. This shows
that the plans that are found on lower selectivity rows do not perform well as
selectivity increases and cannot handle the removal of dimensions. On the other
hand plan, HyperPlanes 17 shows good upper and lower bounds on the MSO
and are able to handle the removal of dimension well. Thus this dimension is
chosen for reduction. Also, we observe a tie in MSO between HyperPlanes 17,
18 and 19. This tie is broken on the basis of average overlap factor for the Hy-
perPlane as defined in Section 3 Similarly Figure 2 and Figure 3 shows bounds
for removal of dimension 0 and dimension 2 respectively and the bouquet of
plans along with min and max budget are show in Column 2 and Column 3 of
the Table 1.
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Table 1: Ikebana Bouquet for reduced dimension with budgets for TPC-H Q5

Reducing dimension 0
Use selectivity row 5 with MSO 24.0

Here’s the Plan Bouquet
Plan Number : Min Cost : Max Cost : Overlap Factor
0 : 32047.57154 : 72584.8408 : 1.0
33 : 143221.48723 : 271056.00391 : 28.0
2 : 39315.74284 : 149520.57702 : 9.0
35 : 233741.21581 : 594256.69581 : 2.0
32 : 163600.859204 : 383326.749728 : 58.0
34 : 39316.88784 : 272311.44922 : 2.0
19 : 87052.302142 : 248789.973949 : 2.0
24 : 94099.625582 : 251011.807459 : 5.0
27 : 143187.97099 : 143196.36005 : 60.0
28 : 39316.01034 : 149520.73702 : 38.0
30 : 39316.25034 : 195476.54914 : 14.0

Reducing dimension 1
Use selectivity row 17 with MSO 20.0

Here’s the Plan Bouquet
Plan Number : Min Cost : Max Cost : Overlap Factor
32 : 163600.859204 : 251555.591209 : 55.0
2 : 32514.30034 : 150061.09922 : 2.0
3 : 81292.75778 : 87647.38038 : 3.0
4 : 81334.47808 : 87647.58788 : 13.0
6 : 81392.754 : 87648.12038 : 6.0
8 : 81501.09053 : 87656.48038 : 5.0
41 : 234086.10581 : 464448.93956 : 4.0
42 : 286990.602609 : 330700.914017 : 27.0
43 : 315186.65456 : 498885.98956 : 103.0
34 : 34713.21409 : 272311.44922 : 2.0
35 : 233741.21581 : 295951.06331 : 5.0
24 : 94054.096832 : 251011.807459 : 2.0
28 : 32786.86034 : 173532.76672 : 15.0
30 : 33062.96784 : 195476.54914 : 7.0

Reducing dimension 2
Use selectivity row 3 with MSO 32.0

Here’s the Plan Bouquet
Plan Number : Min Cost : Max Cost : Overlap Factor
0 : 32047.57154 : 72582.7633 : 2.0
2 : 39315.74284 : 150061.09922 : 9.0
3 : 81292.75778 : 87688.14913 : 1.0
44 : 32344.90764 : 72583.0533 : 16.0
34 : 39316.88784 : 272311.44922 : 2.0
46 : 32654.04994 : 72583.5583 : 11.0
15 : 87051.727142 : 248841.642699 : 4.0
35 : 233741.21581 : 594256.69581 : 2.0
24 : 94099.625582 : 384929.793478 : 6.0
47 : 34450.56499 : 72584.56205 : 21.0
28 : 39316.01034 : 173532.76672 : 40.0
30 : 39316.25034 : 195476.54914 : 14.0

Figure 2: Min/Max MSO bounds for Reducing dimension 0 on TPC-H Q5

Figure 3: Min/Max MSO bounds for Reducing dimension 2 on TPC-H Q5
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6 Conclusion and Future Work

Ikebana has successfully quantified the impact of reducing dimensions in ESS
through experiments on TPC-H benchmarks and established concrete bounds on
suboptimality.The approach given in the report can be used to improve bouquet
performance and reduce time consumed at run time due to high plan density
and large number of error prone predicates.Ikebana reduces compile time cost
for Plan Bouquet as the number of dimensions to explore are reduced. The im-
pact of overlap factor defined in Section 3 can be studied and analyzed further
and the number of points for which multiple plans exist can be reduced.Ikebana
Approach can be extended to reduce multiple dimensions by following itera-
tive scheme such that redundant dimensions are removed one by one till MSO
reaches some upper limit.Thus future work can be in the direction of exploring
whether multiple dimensions can be reduced iteratively one at a time or a com-
bination of few dimensions taken at once yields better results
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