
SNIDS: An Intelligent Multiclass Support Vector Machines Based NIDS

Srinivasa K G AdarshPatil, Harsha K C, Akshay V Joshi and Pramod N

Machine Learning Applications Laboratory, Department of Computer Science and Engineering,
M S Ramaiah Institute of Technology, Bangalore,

{kgsrinivasa, adarshpatil123, akshayvjoshi25, harshakc01, npramod05}@gmail.com

Increase in the number of network based transactions for both personal and professional use has made network
security gain a significant and indispensable status. The possible attacks that an Intrusion Detection System
(IDS) has to tackle can be of an existing type or novel. The challenge for researchers is to develop intelligent IDS,
which can detect new attacks as efficiently as they detect known ones. Intrusion Detection Systems are rendered
intelligent by employing machine learning techniques. In this paper we present a statistical machine learning
approach to the IDS using the Support Vector Machine (SVM). The network traffic is modeled into connections
based on protocols at various network layers. These connection statistics are given as input to SVM which in
turn plots each input vector. The new attacks are identified by plotting them with respect to the trained system.
The experimental results demonstrate the lower execution time of the proposed system with high detection rate
and low false positive number. The 1999 DARPA IDS dataset is used as the evaluation dataset for both training
and testing. The proposed system, SVM NIDS is bench marked with SNORT [1], an open source IDS.

Keywords: Intrusion detection system; Support vector machine; SNORT.

1. Introduction

Intrusion detection has been an active field of research for about two decades. Over these years the world has
seen intrusions of varying intensities ranging from small and less intense attacks such as port sweep or port
scanning to attacks which compromise the whole network. In response the researchers have developed systems
to counterfeit these intrusions. Every attack is characterized by a signature which is derived from the network
traffic. The efficiency of the network intrusion detection system (NIDS) is related to the variety of the attacks it
can counter.

Intrusion detectors typically base their decisions either on signature or anomaly characterization. A wide
range of Artificial Intelligence (AI) techniques have been adopted in IDSs. Initially, Rule Based Systems (RBSs)
were the first to be employed successfully, and are still at the core of many IDSs. This allows for IDSs that
automatically filter network traffic and/or analyze user data to identify patterns of known intrusions. This method
is apt to detect previously known attacks. In case of unseen attacks, only an appropriate abstraction of the pattern
can be deployed to predict intrusions. They are inherently unable to detect novel attacks.

Anomaly based IDS pick on the abnormalities in the characteristics to classify the suspect as an attack. These
characterization approaches range from statistical, inference methods to techniques which are inspired from the
human immune system or bio inspired in general. The primary strength of this approach is its ability to recognize
novel attacks. The drawback here is that, to attain required accuracy, intensive training would be indispensable.
The efficiency depends largely on the diversity of the training data set and the aptness of the parameters used
in the training. This paper deals with an implementation of intrusion detection on the lines of anomaly based
system by adopting a statistical machine learning approach.

Based on the parameters used for training, SVM [2] creates a hyper plane which can be viewed as the demar-
cation between the regions. The number of regions being involved is decided by the choice of classification
method within SVM. The accuracy of the classification relies largely on the optimality of the parameters used
for classification. In intrusion detection the standard set of attacks and their corresponding parameters are used

© 2012. Published by Elsevier Ltd.

268



SNIDS: An Intelligent Multiclass Support Vector Machines Based NIDS

to draw this hyper plane. The hyper plane divides the region into classes of attacks and normal part. The para-
meters of the suspect are also plotted with respect to the hyper plane. If this plot lies in the normal zone then it
is credited to be safe else it is signaled as an attack. The system formulation takes place in two stages, training
and testing. The system learns from the statistics during the training and draws the hyper plane. Testing scores
the efficiency of the trained system to detect attacks.

2. Background

Early development started with understanding the attacks and their identities. System to trace occurrences of
these identities was the order of the day. This gave rise to the classic signature based intrusion detection sys-
tems [3]. Though robust these systems lack the potential to handle novel attacks [4]. Data mining techniques
are often used to make signature matching more efficient. With increasing complexity of the networks to state
the least the increasing protocol layers, the attackers have modeled the attacks to exploit the loop holes in this
complex system. Hence there is a need to generalize the Intrusion Detection process. Newer models to detect
intrusion have become prevalent replacing mechanisms which fish for specific character set to find attacks. This
lead to the rise of another class of IDSs which uses anomaly in the traffic characteristics for intrusion detection.
Of the several models available one model describes the use of protocols, time based analysis for building the
model. This is coupled with algorithm for learning from the conditional rules [5]. Another model involves the
combination of signature based detection for known attacks and anomaly based detection for new attacks form-
ing a hybrid intrusion detection system. They illustrate the use of fuzzy data mining techniques for anomaly
based detection [6]. A Preliminary Performance Comparison of Five Machine Learning Algorithms for Prac-
tical IP Traffic Flow Classification studies the various well known algorithms used for classification of data in
intrusion detection systems. A number of innovations root their inspiration from the system in living being, and
the intrusion detection counterpart found in humans is their immune system and genetics. Modeling this artifi-
cial immune system is based on the way the immune system in the body acts against the pathogens [7]. Another
approach is the application of Genetic algorithm, a machine learning tool, in intrusion detection systems. The
use of Genetic Algorithm and Decision Trees to automatically generate rules for classifying the network con-
nections [8]. A team from Columbia University has proposed an algorithm for unsupervised anomaly based
intrusion detection system for unlabeled attacks. The use of sequence learning methods like instance based
learning and Hidden Markov Model in anomaly based intrusion detection [9], but as the model looses out on the
specificity so does it on the accuracy. Increasing number of false alarms was another trouble emerging. Hence
there has been work concentrated towards reducing the false alarms. The use of data mining and machine learn-
ing specifically to reduce the number of false alarms. They propose to achieve this objective by two methods
1) Improving the quality of alerts 2) Alert correlation. The data mining techniques becomes an indispensable
tool when it comes to handling the enormous network data for examination [10].

The need for a generalized independent model steered the research toward intelligent intrusion detection
systems. By intelligent we mean a system which can learn from the data trends and improve its efficiency over
time. Such systems cancel out the need for human intervention and make way of autonomous detection. The
intelligence is induced by the use of techniques from fields like Machine Learning, Genetic Algorithm, Data
Mining. Hence an ideal intrusion detection system would be one which 1) detects novel attacks 2) produces
minimal (preferably 0) false alarms and 3) learns over time and hence voids the need of human assistance for
up gradation.

3. Motivation and Contribution

So far there has been immense development in the field of intrusion detection. But most of it has been concen-
trated towards signature based intrusion detection systems. These signature based systems can handle only the
known attacks. When it comes to new attacks these systems fail. With the rapidly changing face of the attacks
we need systems which learn from these changes and hence efficiently detect new attacks. The alternative to
a signature based system, anomaly based system is the answer to this problem. Anomaly based systems can

269



Pattern Recognition

be efficiently used to detect novel attacks. In this paper we illustrate the implementation of an anomaly based
system. In this implementation, the network traffic is mined for statistical data and is then fed to a statistical
machine learning algorithm, Support Vector Machines.

4. Dataset for Evaluation, Training and Testing

Application of machine learning techniques involves use of a good dataset and extraction of relevant features
from the dataset. Many of the times these datasets are generated in a controlled environment. This ensures the
controlled injection of intrusions (artificially and intentionally induced) which can later be used for detection.
Many of such research based dataset often come in handy but are never up to the mark due various reasons
ranging from the out datedness of the dataset (hence the attacks which are present in it) to the inadequate spread
of the incident attacks in the dataset. Keeping these in mind researchers tend to generate specific sets involving
highly specific attacks and thus use them in evaluation of IDSs. In the forthcoming method used for Intrusion
Detection, we have used the standard DARPA Intrusion detection and evaluation dataset (98–99).

In the DARPA IDS evaluation dataset, all the network traffic including the entire payload of each packet
was recorded in tcpdump format and provided for evaluation. In these evaluations, the data was in the form
of sniffed network traffic, Solaris BSM audit data, Windows NT audit data (in the case of DARPA 1999) and
filesystem snapshots and tried to identify the intrusions that had been carried out against a test network during
the data-collection period. The test network consisted of a mix of real and simulated machines; background
traffic was artificially generated by the real and simulated machines while the attacks were carried out against
the real machines. Classification of the attacks into four main classes namely, Denial of Service (DoS), Remote
to Local(R2L), User to Remote(U2R) and the Data attacks/surveillance and probing [11].

• Denial of service (DoS) attacks were designed to disrupt a host or network service. Some DoS attacks
(e.g. smurf) excessively load a legitimate network service, others (e.g. teardrop, Ping of Death) create
malformed packets which are incorrectly handled by the victim machine, and others (e.g. apache2, back,
syslogd) take advantage of software bugs in network daemon programs.

• Remote to Local (R2L) attacks, an attacker who does not have an account on a victim machine, sends
packets to that machine and gains local access. Some R2L attacks exploit buffer overflows in network
server software (e.g. imap, named, sendmail), others exploit weak or misconfigured security policies (e.g.
dictionary, ftp-write, guest) and one (xsnoop) is a trojan password capture program. The snmp-get R2L
attack against the router is a password guessing attack where the community password of the router is
guessed and an attacker then uses SNMP to monitor the router.

• Users to root (U2R) attacks occur when a local user on a machine is able to obtain privileges normally
reserved for the UNIX root or super user. Some U2R attacks exploit poorly written system programs that
run at root level which are susceptible to buffer overflows (e.g. eject, ffbconfig, fdformat), others exploit
weaknesses in path name verification (e.g. loadmodule), bugs in some versions of suidperl (e.g. perl), and
other software weaknesses.

• Probe or scan attacks include many programs that can automatically scan a network of computers to
gather information or find known vulnerabilities. Such probes are often precursors to more dangerous
attacks because they provide a map of machines and services and pinpoint weak points in a network. Some
of these scanning tools (e.g. satan, saint, and mscan) enable even an unskilled attacker to check hundreds
of machines on a network for known vulnerabilities.

5. Support Vector Machine: An Introduction

Basic SVM algorithm is an efficient binary classifier. The idea behind SVM approach to intrusion detection is
that we map our data to a feature space. This feature space is the basis for the SVM algorithm which deter-
mines a linear decision surface (hyperplane) using the set of labeled data within it. This surface is then used to
classify future instances of data. Data is classified based upon which side of the decision surface it falls. SVM
is applicable to both linearly separable and non-linearly separable patterns. Patterns not linearly separable are
transformed using kernel functions-a mapping function, into linearly separable ones.

270



SNIDS: An Intelligent Multiclass Support Vector Machines Based NIDS

Figure 1. Classification in linearly separable two class data

It can be formulated as follows, the optimal hyperplane separating the two classes can be represented as:

ω · X + β = 0ω · X + β = 0ω · X + β = 0 (1)

where, X – sample input vectors defined as

{(x1, y1), (x2, y2) . . . (xk, yk)}xk ∈ Rn yi ∈ {1, −1}
ω, β – non zero constants ω indicating the weight component and β indicating the bias component.

The ordered pair x, y is the representation of each input used to form hyperplane which are N dimensional
vectors labelled with corresponding y.

ω · X + β ≥ 1 if yi = 1

ω · X + β ≤ −1 if yi = −1

These can be combined into one set of inequalities:

yi(xxxi · ωωω + βββ) ≥ 1∀i

The above inequalities hold for all input samples (linearly separable and suffice the optimal hyperplane equa-
tion). The optimal hyperplane is the unique one which separates the training data with a maximal margin. The
figure 1 depicts the above mathematical representation [12].

Similarly the mathematical representation of Multi Class SVM [13]. Figure 2 sketches the idea of hyperplanes
and classification in case of multi class data. One of the highlighting difference between the binary and multi
class SVM is the set y = {1, 2, 3, . . . , k} and operations which are dependent on this set. In our experiments
and the proposed system, libSVM [14] is used as the library providing the SVM algorithm.

6. Feature Space

The statistical learning algorithm works on the idea that all the points are numerically represented in the given
feature space. Intuitively it is more relevant if this data is statistical in nature that is a measure of some statistics
of the input data. Considering the above mentioned criterion, researchers developed another dataset which was
derived from the DARPA’s IDS evaluation dataset called the KDD 99 cup dataset. 41 features were extracted
each of certain significance considering the attacks which were inherent in the data. The common intersection of
these features representing attack instances and the statistical nature of the feature are more effective in detecting
attacks especially when the machine learning algorithm under consideration is a statistical one. Among the 41

271



Pattern Recognition

Figure 2. Classification in multi class data

Table 1. List of features and their description.

Feature name Feature description

duration length (number of seconds) of the connection

protocol type type of protocol, e.g. tcp, udp, etc.

service network service on the destination, e.g., http, telnet, etc.

src−bytes number of data bytes from source to destination in a connection

dst−bytes number of data bytes from destination to source in a connection

count−src Number of connections made by the same source as the current record in the last k seconds

count−dst Number of connections made to the same destination as the current record in the last k seconds

count−srv−src Number of different services from the same source as the current record in the last k seconds

count−srv−dst Number of different services to the same destination as the current record in the last k seconds

dst−host−count count of connections having the same destination host

dst−host−srv−count count of connections having the same destination host and using the same service

features, the most relevant features which represents some statistical behavior along with few other count based
features were considered for our system. These features were constant time based counts. The following table
lists the feature and the description of the feature.

The proposed system architecture is as shown in figure 3. It include 3 main components namely the pre-
processor, the learning engine and the detection engine. The proposed architecture is a connection based NIDS
where each TCP/IP connection is analysed over the duration for which the connection is persistent.

6.1 Preprocessor

Preprocessor interacts with network interface and is responsible for collecting data at various network layers. It
comprises of extraction engine and the encoding.

272



SNIDS: An Intelligent Multiclass Support Vector Machines Based NIDS

Figure 3. Architecture of NIDS based on multi class libSVM

• Extraction Engine: The main task of an extraction engine is to interpret the network data into structures
of meaningful representations according to the respective formats in various layers of the network archi-
tecture i.e. into frames at Ethernet layer and packets at TCP and IP layer. These tasks can be further divided
into Sniffing and connection maintenance.

• Sniffer: Sniffer is a pcap based packet capture routine. It extracts the header information such as the Eth-
ernet header, IP header, TCP header. It also maintains these headers in a structure which can be used by the
other part of the system for further processing. The output of a sniffer is the packet information contained
in the above mentioned structure. Collection of packets form connection given that the protocol under dis-
cussion is a connection oriented protocol (eg:tcp). The connection engine uses this packet information to
form the connection information which is used for the statistical analysis.

• Connection Engine: Connection engine maintains the connection information of the packets at the trans-
port layer protocol level. This connection maintenance is dependent on various connection indicating flags
in the TCP header (SYN, ACK etc). It also takes care of the multiple connections spanning a pair of IP,
port.no ordered pair. The connection engine is responsible for maintaining various derived features which
are incident in the packet but not directly available. Eg: srv−count, dst−host−count etc.

• Encoding: The features extracted from the extraction engine(direct and derived) must be encoded to a
format which is compatible with the libSVM library. Encoder does this building of input vector from the
features extracted. The encoded features are written on to a file and this is used as on of the input for the
learning engine.

6.2 Derived initial knowledge (DIK):

The DARPA IDS evaluation dataset [15] consists of a file describing connection based attack information. This
file is the original marker indicating the actual attacks in the system in a summarized manner. Each line indicates
partial connection information which is used to pin point which is the connection in the tcpdump (packet data)
and the label (attack type or normal) is used to mark the input vector for a class type which is useful for the
SVM algorithm.

6.3 Learning engine

Learning engine is a vital part of the system and it builds the knowledge base. This knowledge base enables the
system to make intelligent decisions. The knowledge base is very similar to the equation of the hyperplane and
is the output of the libSVM training.

273



Pattern Recognition

The following are the two components of the learning engine:

• Comparator: This unit matches derived initial knowledge against the data provided by the extraction
engine. This match formulates a database of attacks and non attacks in the libSVM encoded form. The
main task of this unit is to match the input feature vector from the extraction engine with the derived initial
knowledge in order to mark the vector with the type of class to which it belongs as indicated in the DIK
provided as a part of the IDS evaluation Dataset(Supervised Learning Ideology).

• libSVM-train: libSVM is an integrated software for support vector classification, regression and distribu-
tion estimation. LIBSVM uses the training data set and formulates a model. This model acts as the knowl-
edge base for the IDS consisting of the classification parameters (hyperplane details). The model file thus
generated is used for prediction during the detection phase.

6.4 Detection engine

The detection engine uses the model constructed by the learning engine to classify real time traffic. The inputs
to this stage is the encoded feature vector from the preprocessor and the training model from learning engine.

The following is the component of the detection engine:

• libSVM-Predict: The predictor uses the SVM model and analyzes the given encoded input vector. The
output of this stage gives the class label after the classification stage and the confidence with which the
classifier was able to classify it into a particular class.

• Detector: The detector maintains a state variable which is used to flag the input connection as the attack
connection. This state variable in combination with the input from the libSVM-predict is used to flag
the incident connection. This depends on the the confidence value of classification, the connection under
consideration etc. Once the connection is flagged the vector and the connection summary is written onto a
file with the attack label. This file corresponds to the Alert part in the architecture.

6.5 Input sampling and evaluation

The output generated after the preprocessing stage which includes feature extraction from the network data and
the encoding of this feature is as shown below.

1 1:0 2:1 3:1 4:239 5:486 6:8 7:8 8:2 9:2 10:7 11:6
1 1:2 2:1 3:3 4: 5:486 6:8 7:8 8:2 9:2 10:7 11:6
1 1:0 2:1 3:5 4:1367 5:335 6:3 7:3 8:2 9:2 10:21 11:72
6 1:182 2:1 3:6 4:1511 5:2957 6:1 7:1 8:2 9:2 10:1 11:3

6.6 Performance analysis

An IDS can be tuned in such a way that it scores particularly well on a particular data set. Some of the attributes
specifically are: Remote Client Address, TTL, TCP options and TCP window size – have a small range in the
DARPA simulation, but have a large and growing range in real traffic. IDS which take into account the above-
mentioned attributes are likely to score much better on the DARPA set than in real life. Since our system does
not consider these attributes, we can legitimately expect that the system in real life performs as well as it does
on the DARPA benchmark. The proposed system is trained using internal network traffic of week 1 and week 3
[15]. Then the testing weeks 4 and 5 [15] data are used to benchmark the network intrusion detection process.
This data contains several attack instances as well as legal traffic, directed against different hosts of the internal
network: the attack source can be situated both inside and outside the network. The results of the experiment
conducted on the system using the DARPA IDS Evaluation dataset are tabulated in the following graphs and
tables.

Table 2 represents the true positive rate of each class of attack in the DARPA Dataset. The true positive rate is
indicative of the fact that the modelling of features is efficient for detecting the following classes of attack. The

274



SNIDS: An Intelligent Multiclass Support Vector Machines Based NIDS

Table 2. True Positive Rate for each class.

Attack class Normal Probe DOS U2R R2L

TPR 0.9936 0.9613 0.9711 0.8725 0.882

Table 3. Confusion matrix of DARPA test set (one day) on
SVMNIDS.

Normal Probe DoS U2R R2L

Normal 74425 163 180 57 79

Probe 48 3039 63 8 5

DoS 5486 1821 292712 856 547

U2R 69 18 28 919 20

R2L 155 14 60 21 1873

Table 4. Total number of instances of
each class of data in test set used.

Number of instances

Normal 74904

Probe 3163

DoS 301422

U2R 1054

R2L 2123

test set consisted of new forms of attacks which belonged to various classes. The system was able to classify
the novel (but ones belonging to the existing class) attacks with the tabulated accuracy.

The low detection rate of R2L and U2R is due to the nature and the way these attacks are launched. These
attacks are prominently payload based which include access of a remote system by the use of commands for
example the use of ftp commands such as su,ls,user etc. Some of these commands are not of attack type and
the rest are. Modellingthese attacks for a statistical learning algorithm is relatively not accurate as it lacks the
statistical features. Although it can be modelled as a binary 0/1 value in the vector, depending on the payload
analysis, increasing the dimension of the feature space. This was partly incorporated in the KDD cup data set
[16] and the results of our SVMNIDS on DARPA dataset is as shown in table 3 Further to this, the table can be
compared with the KDDcup winner result [16].

Table 3 suffices the true positive rate of the system and gives the anatomical view of the classification via the
confusion matrix. It also indicates that the incident attack on the test dataset (of a particular day) consists more
of DOS class(including novel DOS attacks). The account to number of instances in the test set is as shown in
Table 4.

The above analysis indicate that the system performs better on DARPA dataset (and inturn on realtime traffic)
and matches closely with the desired results obtained on a more statistical KDDcup dataset [16]. The following
is a benchmark comparison with the Open Source IDS SNORT [1]. Snort is a rule based Intrusion Detection
System which effectively compares the rule set and makes decision on intrusion behavior. It analyses various
parts of the packet including headers of different layer, preprocessing on payload etc. Snort though widely used
and deployed in real time systems, it is known to produce undesirable results with attacks and datasets which
are found in DARPA IDS evaluation dataset. The large number of false positives has been a raising concern
for network administrators. Figure 4 gives an insight on the behaviour of SVM NIDS and the SNORT IDS.
The ROC curve was plotted for the same testing dataset which was run on both the system. SVM NIDS at best
was able to detect attacks with a True Positive Rate (TPR) of 0.9672 and a False Positive Rate (FPR) of 0.122
and snort on the other hand did the same with a True Positive Rate (TPR) of 0.853 and False Positive Rate

275



Pattern Recognition

Figure 4. TPR vs FPR (ROC curve) plot comparing SVM NIDS and snort IDS

(FPR) of 0.12. On an average SVM NIDS has a higher TPR and a corresponding low FPR. An analysis of the
performance of SNORT on the DARPA dataset has allowed us to perform the comparison [17].

7. Conclusion and Future Work

It is often difficult to know which items from an audit trail will provide the most useful information for detecting
intrusions. The process of determining which items are most useful is called feature selection in the machine
learning literature. The selection process for our system yielded the feature set shown in Table 1. This feature
set resulted in more than satisfactory overall results favouring few classes. This can be overcome to detect every
class of attack with the similar accuracy by selecting more effective statistical features by increasing the feature
space and also taking care of redundant features i.e features which do not help in detecting many of attacks. This
will help in improving the performance in terms of detection rate as well as the time involved in computation
during training.

Our system uses a standard one model system of libsvm where all of the training is reflected on to a single
model file (KB). This can be improved by training the system with multiple models which when combined forms
a multi class classifier. This is useful in detecting the minority classes and classes such as R2L and U2R. This
will also help in determining the confidence level of the system by comparing the prediction against different
model files.

The system does not provide filtering as in case of a normal firewall. This can be an improvement which can
be included in our future work. Connection based approach is costlier because it has to maintain connection
information for realtime traffic. This is especially costly when we consider the current multiple connection
scenarios where much connection can be started from and to a source destination pair. Our system uses a
linear linked list to maintain connection information which can be improved to use of tress or TRIEs (retrieval
trees). Incremental statistical learning is another area where there can be lot of future development in Intrusion
detection. With incremental learning the performance of the system can increase over time adjusting to the
incoming traffic.

Finally, the results of the proposed system show promising development in the application of statistical learn-
ing for intrusion detection systems.The same is true for connection based IDS as the results from our system is
better than those shown by rule based or packet based approaches.

8. Acknowledgements

This project is financially supported by DRDO sponsored project titled Machine Learning Techniques for Data
Mining Based Intrusion Detection Systems (Ref. No.: ERIPR/ER/0705066/M/01/1256) to Dr. Srinivasa K G,
Professor, Department of Computer Science and Engineering, M S Ramaiah Institute of Technology, Bangalore,

276



SNIDS: An Intelligent Multiclass Support Vector Machines Based NIDS

India. We acknowledge Dr. T V Suresh Kumar, Dr. K Rajanikanth, Dr. D E Geetha and Mrs. Mrunalini M for
their kind support.

References

[1] M. Roesch. Snort – Lightweight Intrusion Detection for Networks. Proceedings of USENIX LISA’99, November 1999.
[2] Cristianini, Nello, ShaweTaylor, John; An Introduction to Support Vector Machines and other kernel-based learningmethods,

Cambridge University Press, 2000.
[3] Nitin, Mattord, Verma. Principles of Information Security. Course Technology. pp. 290–301, 2008.
[4] Anderson, Ross. Security Engineering: A Guide to Building Dependable Distributed Systems. New York: John ley & Sons.

pp. 387–388, 2001.
[5] M. Mahoney, A Machine Learning Approach to Detecting Attacks by Identifying Anomalies in Network Traffic, Ph.D Disser-

tation, Florida Institute of Technology, 2003.
[6] S. Bridges and R. Vaughn, Fuzzy data mining and genetic algorithms applied to intrusion detection, Proceedings twenty third

National Information Security Conference, October 1–19, 2000.
[7] M. Glickman, Balthrop and S. Forrest. A machine learning evaluation of an artificial immune system. Evolutionary Compu-

tation, 13(2):179–212, 2005.
[8] Sara Matzner Chris Sinclair, Lyn Pierce, An application of machine learning to network intrusion detection in Proceedings

of the 15th Annual Computer Security Applications Conference, pages 371–377, Phoenix, AZ, 1999.
[9] T. Lane and C. Brodley, Temporal sequence learning and data reduction for anomaly detection. ACM

[10] Transactions on Information and System Security, 2(3), August 1999.
[11] T. Pietraszek and A. Tanner Data mining and machine learning towards reducing false positives in intrusion detection. Inform

Secur Tech Rep; 10(3):169–83, 2005.
[12] R. Lippmann, et al. The DARPA Off-Line Intrusion Detection Evaluation, Computer Networks 34(4) 579–595, 2000.
[13] V. Vapnic. The Nature of Statistical Learning Theory, Springer, New York, 1995.
[14] C. Cortes and V. Vapnik, Support-vector network, Machine Learning, vol. 20, pp. 273–297, 1995.
[15] C. C. Chang and C.-J. Lin, LIBSVM: A Library for Support Vector Machines 2001.
[16] DARPA intrusion detection evaluation, http://www.ll.mit.edu/IST/ideval/data/data index.html
[17] KDD Classifier Learning Contest http://cseweb.ucsdedu/∼elkan/clresultshtml, 1999.
[18] C. Thomas and N. Balakrishnan, Usefulness of DARPA data set in Intrusion Detection System evaluation,
[19] Proceedings of SPIE International Defense and Security Symposium, 2008.

277


