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#R Quantifying communication overheads

-

* Functions from FunctionBench and SeBS benchmark suites
 Compute - Optimized with Intel OneAPI, run on 16-core Skylake CPUs
 Communication - Amazon S3 object store (median of 100 executions)
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Inefficiency of FaaS applications

FUNCTIONS

x Communication overheads severely limit performance
Can we do better?
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i Can we do better?

-
Reliable
CXL.mem

* High-performance in-memory object store
* One-sided RDMA verbs to read/write objects

* Infiniband network (Mellanox ConnectX-3 NIC on PCle-gen3 x16)
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prime Video | : Published on May 16, 2023 In Endless Origins
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Amazon Prime Dumps Serverless
Scaling up the Prime Video for Monolithic Architecture

audio/video monitoring service and
rEd UCing COStS by 900/0 startups would obviously have smaller tech teams

The move from a distributed microservices architecture to a monolith
application helped achieve higher scale, resilience, and reduce costs.

Microservices were better suited for startups which had mushroomed all over because

By Poulomi Chatterjee

“The two most expensive operations in terms of
cost were the orchestration workflow and when
data passed between distributed components.”



Apta architecture

Object-granular CXL disaggregated memory
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Object-granular CXL disaggregated memory
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Performance potential of Apta

With dlsaggregated memory - OpenCAPI-like access latency / bandwidth®
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FhFh Performance potential of Apta
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FhFh Performance potential of Apta
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LI The CXL.mem coherence

* Enforcing strong consistencyin presence of caching
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The CXL.mem coherence

* Enforcing strong consistencyin presence of caching
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The CXL.mem coherence

* Enforcing strong consistencyin presence of caching
CXL 3.0 inter-node coherence protocol

Enforces SWMR invariant !
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e The need for fault-tolerant coherence

* The fault tolerance problem
Compute server failures
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The need for fault-tolerant coherence

* The fault tolerance problem
Compute server failures
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&2 The need for fault-tolerant coherence
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* The fault tolerance problem

Compute server failures — blocking &
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&2 The need for fault-tolerant coherence

-

* The fault tolerance problem

Compute server failures — blocking &
Network congestions— high tail latency
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A Key Problem — CXL not fault-tolerant!

-

* |nvalidation in critical path of write => Writes block when compute servers fail
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A Key Problem — CXL not fault-tolerant!

-

* |nvalidation in critical path of write => Writes block when compute servers fail

* Insufficient RAS capabilities in CXL specification
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Key Problem — CXL not fault-tolerant!

* |nvalidation in critical path of write => Writes block when compute servers fail

* Insufficient RAS capabilities in CXL specification

 FaaS embraces fault-tolerance => CXL must likewise
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" Apta: Fault-tolerant Coherence Protocol

Zi. Lazyinvalidation policy

ii. Coherence-aware function scheduling



Apta: Fault-tolerant Coherence Protocol
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Apta: Fault-tolerant Coherence Protocol
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®B~ Apta: Fault-tolerant Coherence Protocol

Strong consistency + Availability

v’ Lazy linearizability

Lazy invalidation protocol + Coherence-aware scheduling
v' Fault-tolerant operation

Resilient to failure of compute server

v’ Provides line-rate coherence
Enables deployment on DPUs / SmartNIC / ToR switches
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e Apta’s design

Reliable
CXL.mem

a) CXL disaggregated memory-based object store
Extended shmem IPC
Defines a caching policy
Locality-aware scheduling

b) Fault-tolerant coherence protocol h

Tailored coherence protocol This talk
Lazy Invalidation of sharers and coherence-aware scheduling)

g
c) Object-granular disaggregated memory

Bulk cache-line loads
Transactional atomic durability
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Realizing Apta’s design

Object-granular CXL disaggregated memory

out-of-band
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Fig: Apta system schematic
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Realizing Apta’s design

-

(b) Fault-tolerant coherence

Object Tracking Controller

/ OTC /Directoryfor the coherence
protocol

Object Invalidation Controller

/ OIC Reverse address translation +
tracks invalidation-acks

(c) Object-granular disaggregated mem

/ OSC

/ OPC

Object Serving Controller

Address translation + bulk cache
line response

Object Persistence Controller

Persists entire object atomically
using one-phase commit



Po00” Performance Evaluation

-

Custom trace-driven gem5 simulation

* Prismtraces " annotated with phase of execution

* 3 computeservers, 1 disaggregated memory server

 Computeserver: single socket 3GHz, per-core L1, shared L2, 2 x 8GB DDR4
« Memory server: 2 x 8GB DDR4, modelled controllers (OTC, OIC, OPC, OSC)
« Coherence Protocol: MOESI (intra-server), Apta (inter-server)

* Interconnect: point-to-point (500ns, 80bps), full-duplex

Benchmarks
* Full Faa$S applications - 6 workflows, 27 functions
» Different domains, communication patterns, realisticscheduling decisions
* Applicationsfrom AWS use cases and serverless frameworks (numpywren, THIS)
PHI data, Sentiment analysis, FINRA, Video transcode, Image prediction, Serverless GEMM

*SynchroTrace, ISPASS ‘15
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Apta performs
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Apta Summary

\

40% — 142% over RDMA Protocol verified in Mur@ model checker
21% —90% over RDMA + caching 32% lower standard deviation of exec time

15% — 42% over un-cached CXL

Shared memory IPC https://github.com/adarshpatil/apta O
Bulk cache-line loads https://adar.sh/apta
Transaction atomic durability

#OpenToWork @adarshpatil
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