DSN 2023 (Qm)
—4

Apta: Fault-tolerant object-granular CXL disaggregated
memory for accelerating FaaS

Adarsh Patil

Vijay Nagarajan Nikos Nikoleris Nicolai Oswald
3‘6'01\‘!%3‘ IHE UNIVERSITY gf’EDINlSURGH
J"@/)!B\}Q}? Informqtlcs a r m nVIDIA®

S Function-as-a-Service or “Serverless”

Google Cloud
Functions
AWS Lambda

f FaaS

IBM Cloud
Functions

Rel‘i'able
CXL.mem
Developer
Scalability
On-demand AWS Lambda
IBM Cloud

Functions

<

Azure Functions

Pay for usage

Productivity

©

Google Cloud
Functions

FaaS

Oracle Functions

Function-as-a-Service or “Serverless”

Provider
Efficiency
Utilization

o

Knative concerns

Separation of

\ & 4

Cloudflare Workers

Value add

Rel‘i'able
CXL.mem
Developer
Scalability
On-demand AWS Lambda
IBM Cloud
Functions

Pay for usage

<

Azure Functions

Productivity

©

Google Cloud
Functions

FaaS

Oracle Functions

Function-as-a-Service or “Serverless”

Provider
Efficiency
Utilization

o

Knative concerns

Separation of

\ & 4

Cloudflare Workers

Value add

FUNCTIONS

200 FaaS applications /

Reliable ()
CXL.mem

e State machine workflow of stateless functions

[——==-]

read_csv

v

sentiment_analysis

/\

publish_to_sns write_to_db

FUNCTIONS

R FaaS applications 72
o L4
Reliable)
CXL.mem
* Cloud provider dynamically orchestrates and i
schedules functions on a fleet of compute servers read_cov ALE
=
sentiment_analysis EIIE
publish_to_sns write_to_db

INNNEN]
3
w
LI
HNNEN]
2]
=

FUNCTIONS

T FaaS applications /

-
Reliable
CXL.mem

— | Ll
:

read_csv [

2
-
LI

v

* State maintained externally as objects in a
remOte data Store X 4W sentiment_analysis

'OG UL
e L i
o;/‘e'//.
W
=]

write_to_db

INNNEN]
3
w
HNNEN]
2]
=
LR

FUNCT

FEh FaaS applications

-
Reliable)
CXL.mem

IONS

’

yiries
;2':.

.‘,’2‘-
S

}
read_csv T
e State maintained externally as objects in a .
remote data store S “mseiieien | sentiment_analysis {imaf
x Splitting state-compute adds communication overheads \W ' \
How much? .
write_to_db

e
#R Quantifying communication overheads

-

* Functions from FunctionBench and SeBS benchmark suites
 Compute - Optimized with Intel OneAPI, run on 16-core Skylake CPUs
 Communication - Amazon S3 object store (median of 100 executions)

100 o A

/ % 7] compute
% ? d get
& 80 % @ put
2 60 % : .
2 0
96% of execution time is spent
5 40 : C
b in retrieving data from S3
i;\c
20 ﬁ
[R 4
0 SU &\O\\ Ay o A7 “\\\\ ;,‘%.\0\4 »‘)\0\‘ C’._«;\O\\ o8 DC‘
\ [e LS oy
%\“2»9 \(\\ v v\\ Q \\‘\ (& o C/o\\\\ v O . o A\ & e(é) 5% (e}
o \“\z\%/ o

-
Reliable
CXL.mem

Inefficiency of FaaS applications

FUNCTIONS

x Communication overheads severely limit performance
Can we do better?

parsed_reviews

— | Ll
</ - —
9k
read_csv [
v
Ll

d
" parsed_reviews

sentiment_analysis

T~

publish_to_sns

write_to_db

IHENEN]
H
w
TTTT

HNNEN]
2]
=

Ny
i Can we do better?

-
Reliable
CXL.mem

* High-performance in-memory object store
* One-sided RDMA verbs to read/write objects

* Infiniband network (Mellanox ConnectX-3 NIC on PCle-gen3 x16)
e 7 s . o |
- 7 b Z g0 s 51% of execution time is spent in

QL put . . .

: b retrieving data from object store

S 60 |

£ w0 o

. 20
%@?‘“ “\ix‘\‘a\"@{\oz Qd%b‘a;x:\\agge"wb o “\x\;mv\' 40;0 o e SO¥ xo%"

350\\"\6’ gra? ' 0o® g oS

prime Video | : Published on May 16, 2023 In Endless Origins
\—/1

Amazon Prime Dumps Serverless
Scaling up the Prime Video for Monolithic Architecture

audio/video monitoring service and
rEd UCing COStS by 900/0 startups would obviously have smaller tech teams

The move from a distributed microservices architecture to a monolith
application helped achieve higher scale, resilience, and reduce costs.

Microservices were better suited for startups which had mushroomed all over because

By Poulomi Chatterjee

“The two most expensive operations in terms of
cost were the orchestration workflow and when
data passed between distributed components.”

Apta architecture

Object-granular CXL disaggregated memory

Dy .
2n2 Apta architecture

-
Reliable
CXL.mem

Object-granular CXL disaggregated memory

Pooled + shared memory on

memory server .
/ centralized memory server

Specialized controllers for
data plane operations

- — Ctrl
control plane operations

Low-power SoCfor |
out-of-band |! !

config bus
CXL 3.0 links <—

Hardware load/store interface

CPU

ITTITHITTITY

CPU

CPU

(LR
NI

AT

[LLLLLLLLLLLS LLLLLLLLLL LLLLLLLLELLS

compute server compute server compute server
| |

Cache data from
remote memory

Fig: Apta system schematic

ol

Performance potential of Apta

With dlsaggregated memory - OpenCAPI-like access latency / bandwidth®

412X 139x
120
N m S3
_100| RDMA
3 DM
£ 80
N |
2. 60 — _
=] 2x over
o |
A 40 RDMA object store
20 m (59x over S3
1

WS

AN
@\)
%‘g B@\Q % {x‘&\\

X

'8
erat
e o Oﬁ\,@

'\O“ \00 \O_Q e‘a"“
5o x%‘ %te%cv‘ %eoﬁ‘

9

o ‘a@\“ @%e

ALt

13% communication overheads (Recall 51% for RDOMA-based object store)
" ThymesisFlow [MICRO 20]

FhFh Performance potential of Apta

Rel‘i'able
CXL.mem
With object caching at compute server
412x ! P 834 % 139x! P 164 x
120
B s3
100 | RDMA
z DM
§ 80 B DM+-caching
: o
2, 60|]
= = 2.3x over
D | | .
S 40 RDMA object store
ﬂ 1
o W 310 o 00 o o a0
m@“ﬁg PN o0 Q‘a%e@_ 6%6/@5\ 0 Q{eeﬁ\ 0%0@’\. I %eoﬁ‘e‘
ST et i i O 3% et
\3;(,\9“% o

FhFh Performance potential of Apta

Rel‘i'able
CXL.mem
With object caching at compute server
412x ! P 834 % 139x! P2 164 x
120
B s3
100 | RDMA
2z DM
g 80 Bl DM+caching
: a
e 60|]
= T 2.3x over
i - | , Our target!
S 40 RDMA object store
| BT (
—g\%}(’ &XO 6{3}9\(’ Yeg,ﬂ) &ﬁ\\)\ 86\00 qﬁ\oﬁ 6\0“ e‘&“
- i) {C aAY ge Q,O
go¥ aeseﬂa\x 9‘0/99% ¥ B com? o3 0% A0 et ®
@Bﬂ% \()%X

‘3600’ B\

LI The CXL.mem coherence

* Enforcing strong consistencyin presence of caching

ol

The CXL.mem coherence

* Enforcing strong consistencyin presence of caching

|

IPIITETRg
\’b'(ﬁ\l g g
Q B\ read_CSV TTTTTT
(’b\ﬂ/ ‘e\l\e
0/
>
\ \ 4
‘pa rsed reviews | 00 [<»| | A
E——

INNNEN]
B
N
TTTTTT

PE——
parsed_reviews | santiment analvsis
|J'|_ \Parse < Y

=Views
publish_to sns write_to_db

IIIIIIIIIIII

H
w
ITTTT1
H
=

ITITTT ITITTT

ol

The CXL.mem coherence

* Enforcing strong consistencyin presence of caching
CXL 3.0 inter-node coherence protocol

Enforces SWMR invariant !
IIIIII
(ﬁ‘l é g
s read csv Rund
o —
@ o
88
56
/ v
‘parsed reviews UL
S— = =
+«— | q1C2| E
] w";ﬁs sentiment_analysis :,,:
e

=Views
publish_to sns write_to_db

ITITTT ITITTT

ITITTT ITITTT

2

-

write

ack

The CXL.mem coherence

|->S

—] 11l
N = -
@ d - =
&2 q° rea CcSsv TTTTTT
oS oV —
[eé/‘e\l\
S
Qz‘ v
IIIIII

|

INNNEN]
B
N
TTTTTT

sentiment_analysis

/\

-] -]

publish_to sns

write_to_db

LI The CXL.mem coherence

-
Reliable
CXL.mem
:||||||:
> 4 L<E
Mem c1 C2 C3 W read_csv P
> -

Write
% VL
N\em\N(ack I _> S ::: IIIIII

INNNEN]
B
N
TTTTTT

ead - ‘! sentiment_analysis [
MRl e ——
\da*, |->S

publish_to sns write_to_db

-
Reliable
CXL.mem
Mem wite
ek
MemRd 4,/
<«
Inv
inv-ack

eﬂ‘\N‘

e

The CXL.mem coherence

|->S
read
’ ,—
data

Write
ed_reviews

S->|

ack

—

|->S

|

< =
parsed_reviews

sentiment_analysis

——] 11l
</> -
=
read_csv [
v
LIl

/\

publish_to sns

-] -]

write_to_db

-
Reliable
CXL.mem

Write

MemRd 4,/
< |
Inv
inv-ack
‘&
read

MemRd

eviews

The CXL.mem coherence

pars ed_"
<

|->S

|->S

|

publish_to sns

——] 111111
-</> - -
o [E
éa‘a' read_csv g
(’5\“/
|
M
e e e _—/> -
< | C2
~_parsed_reviews | santiment analysis |3
e S —analy
oreviens \

write_to_db

e The need for fault-tolerant coherence

* The fault tolerance problem
Compute server failures

2

-

The need for fault-tolerant coherence

* The fault tolerance problem
Compute server failures

Mem C

e\

/

MemRd

Write
revi ews

y
ack

e

PR

<~]

iny

|->S
read

data

Write

pars ed_reviews

S->|

|->S

|

T

:

5 d £

XS) read_csv B
3 < %\ﬂ - ‘e\i\e

e\ -~
Q’a‘s \ 4
‘p arsed_reviews

e [
LEE pa rs%revi ews

sentiment_analysis

INNNEN]
B
N
TTTTTT

/\

-]

publish_to sns

-]

write_to_db

2

&2 The need for fault-tolerant coherence

-

* The fault tolerance problem

Compute server failures — blocking &

Mem , Cl C2 C3
Write
Parsed,\’e\f‘e""S
4&4 |->S
read
MemRd 4//
4/4>\ data
|->S
Write
iny

S->|

|

q :
o -
2 p -
R read_csv
S
e\ -~
Q’a‘s v

‘ " =]
parsed_reviews
[

”‘! parsxfe"‘ews sentiment_analysis |4

INNNEN]
B
N
TTTTTT

/\

-]

publish_to sns

-]

write_to_db

2

&2 The need for fault-tolerant coherence

-

* The fault tolerance problem

Compute server failures — blocking &
Network congestions— high tail latency

Mem , Cl C2 C3
Write
Parsed,\’e\f‘e""S
4&4 |->S
read
MemRd 4//
4/4>\ data
|->S
Write
/',7[/
‘nV_aCk S -> I
A&< ack
—

—] INNNNN]
2 = =
- read_csv T

3~ ale
@ 5 ‘e“‘e
R
Q \ 4

|

A :
parsed_reviews

e [
LEE pa rs%revi ews

||||||

sentiment_analysis

INNNEN]
B
N
TTTTTT

/\

-] -]

publish_to sns write_to_db

A Key Problem — CXL not fault-tolerant!

-

* |nvalidation in critical path of write => Writes block when compute servers fail

|

111111
= HEk
Mem it Cl C2 C3 read_csv [
arsed reviews |
o _
N\em\N‘ “/ck | > S e ‘parsed_reviews A
read — parsed_reviews | sentiment_analysis Y-
W /\
MemRd 4//
D EEm— — —
| data
N <> <>
|>S [=
write publish_to sns write_to_db
1 S ITITTT ITITTT
w/ - = - =
' {LEIE 1Bz
Inv TTTTTT TTTTTT
inv-ack S->|
N\em\N‘ — @ | ack
/ I —

A Key Problem — CXL not fault-tolerant!

-

* |nvalidation in critical path of write => Writes block when compute servers fail

* Insufficient RAS capabilities in CXL specification

|

111111
ol]
Mem it Cl C2 C3 read_csv [
arsed reviews |
o _
N\em\N‘ 4/ck | > S e ‘parsed_reviews A
read — parsed_reviews | sentiment_analysis Y-
W /\
MemRd 4//
D EEm— — —
| data
)] </>] <>
|->S _ | <]
write publish_to sns write_to_db
1 S ITITTT ITITTT
/PW 3 = 3 =
' {LEIE 1Bz
Inv TTTTTT TTTTTT
inv-ack S->|
N\em\N‘ — @ | ack
/ I —

2

-

Key Problem — CXL not fault-tolerant!

* |nvalidation in critical path of write => Writes block when compute servers fail

* Insufficient RAS capabilities in CXL specification

 FaaS embraces fault-tolerance => CXL must likewise

Mem e C

4& 2k
— ack |
MemRd 4//
—

inv
|nv-ack
W

=

1 C2

|->S
read

data

Write
reviews

S-> |

ack

— =

|->S

C

3

|

— INENET]
H9E
read_csv [N
\4
“parsed_reviews e
J1CQ|E
parsed_reviews | sentiment_analysis :l.:

/\

publish_to sns

write_to_db

" Apta: Fault-tolerant Coherence Protocol

Zi. Lazyinvalidation policy

ii. Coherence-aware function scheduling

Apta: Fault-tolerant Coherence Protocol

Mem C

e\

Write

iews
ed_rev
P ars
=

/\>

MemRd

e

—

Pending-inv
C1

PR

<~]

o |

iny

e

Lazy invalidation policy
Write is acknowledged immediately

|->S

read
eviews

data

Write

pars ed_reviews

ack

— <

S->|

Invalidation messages are sent asynchronously and tracked

|->S

|

read_csv

\ 4

<
parsed_|

reviews sentiment_analysis

/\

publish_to sns write_to_db
IIIIII_ _IIIIII_
: 3[alf

Apta: Fault-tolerant Coherence Protocol

invalidation-acknowlegements

Mem . C
Write
w
A& ack
ek
MemRd 4//
«— |

wermW <

—

Pending-inv
C1

iny

e

|->S

read
eviews

data

Write

pars ed_reviews

ack

— <

S->|

Coherence-aware function scheduling
= Never schedules function invocations on servers with pending

|->S

|

< =
parsed_reviews

—] HNNEN]
</> - -
< HaE
read_csv [
v
:IIIIII:
_ EIE):
sentiment_analysis |-

/\

publish_to sns

write_to_db

x

T

®B~ Apta: Fault-tolerant Coherence Protocol

Strong consistency + Availability

v’ Lazy linearizability

Lazy invalidation protocol + Coherence-aware scheduling
v' Fault-tolerant operation

Resilient to failure of compute server

v’ Provides line-rate coherence
Enables deployment on DPUs / SmartNIC / ToR switches

Sy _
e Apta’s design

Reliable
CXL.mem

a) CXL disaggregated memory-based object store
Extended shmem IPC
Defines a caching policy
Locality-aware scheduling

b) Fault-tolerant coherence protocol h

Tailored coherence protocol This talk
Lazy Invalidation of sharers and coherence-aware scheduling)

g
c) Object-granular disaggregated memory

Bulk cache-line loads
Transactional atomic durability

Reliable
CXL.mem

Realizing Apta’s design

Object-granular CXL disaggregated memory

out-of-band
config bus

memory server

Mem
Ctrl

o | o || o | o T

Specialized controllers for

/ data plane operations

CXL 3.0 links

CPU

LLLLLLLLL
compute server

(LR

ITTITHITTITY

LSRR

CPU

LLLLLLLLLLL
compute server

J

|

CPU

AT

LLLLLLLLLLL
compute server

Fig: Apta system schematic

2

Realizing Apta’s design

-

(b) Fault-tolerant coherence

Object Tracking Controller

/ OTC /Directoryfor the coherence
protocol

Object Invalidation Controller

/ OIC Reverse address translation +
tracks invalidation-acks

(c) Object-granular disaggregated mem

/ OSC

/ OPC

Object Serving Controller

Address translation + bulk cache
line response

Object Persistence Controller

Persists entire object atomically
using one-phase commit

Po00” Performance Evaluation

-

Custom trace-driven gem5 simulation

* Prismtraces " annotated with phase of execution

* 3 computeservers, 1 disaggregated memory server

 Computeserver: single socket 3GHz, per-core L1, shared L2, 2 x 8GB DDR4
« Memory server: 2 x 8GB DDR4, modelled controllers (OTC, OIC, OPC, OSC)
« Coherence Protocol: MOESI (intra-server), Apta (inter-server)

* Interconnect: point-to-point (500ns, 80bps), full-duplex

Benchmarks
* Full Faa$S applications - 6 workflows, 27 functions
» Different domains, communication patterns, realisticscheduling decisions
* Applicationsfrom AWS use cases and serverless frameworks (numpywren, THIS)
PHI data, Sentiment analysis, FINRA, Video transcode, Image prediction, Serverless GEMM

*SynchroTrace, ISPASS ‘15

-
Reliable
CXL.mem

2.4

2.2

= = =
IN o)) 0o N

Speedup (Higher is better)

=
N

RDMA1

0.8

Performance Evaluation

p\n\ ’d ata

m RDMA _f + FaaSt

m RDMA + FaaSt

B CXL uncached

Apta performs
85% 42% 31% 24%
better

mean

geo

vz

Apta Summary

\

40% — 142% over RDMA Protocol verified in Mur@ model checker
21% —90% over RDMA + caching 32% lower standard deviation of exec time

15% — 42% over un-cached CXL

Shared memory IPC https://github.com/adarshpatil/apta O
Bulk cache-line loads https://adar.sh/apta
Transaction atomic durability

#OpenToWork @adarshpatil

	Slide 1: Āpta: Fault-tolerant object-granular CXL disaggregated memory for accelerating FaaS
	Slide 2: Function-as-a-Service or “Serverless”
	Slide 3: Function-as-a-Service or “Serverless”
	Slide 4: Function-as-a-Service or “Serverless”
	Slide 5: FaaS applications
	Slide 6: FaaS applications
	Slide 7: FaaS applications
	Slide 8: FaaS applications
	Slide 9: Quantifying communication overheads
	Slide 10: Inefficiency of FaaS applications
	Slide 11: Can we do better?
	Slide 12: The problem: Communication overheads
	Slide 13: Āpta architecture
	Slide 14: Āpta architecture
	Slide 15: Performance potential of Āpta
	Slide 16: Performance potential of Āpta
	Slide 17: Performance potential of Āpta
	Slide 18: The CXL.mem coherence
	Slide 19: The CXL.mem coherence
	Slide 20: The CXL.mem coherence
	Slide 21: The CXL.mem coherence
	Slide 22: The CXL.mem coherence
	Slide 23: The CXL.mem coherence
	Slide 24: The CXL.mem coherence
	Slide 25: The need for fault-tolerant coherence
	Slide 26: The need for fault-tolerant coherence
	Slide 27: The need for fault-tolerant coherence
	Slide 28: The need for fault-tolerant coherence
	Slide 29: Key Problem – CXL not fault-tolerant!
	Slide 30: Key Problem – CXL not fault-tolerant!
	Slide 31: Key Problem – CXL not fault-tolerant!
	Slide 32: Āpta: Fault-tolerant Coherence Protocol
	Slide 33: Āpta: Fault-tolerant Coherence Protocol
	Slide 34: Āpta: Fault-tolerant Coherence Protocol
	Slide 35: Āpta: Fault-tolerant Coherence Protocol
	Slide 36: Āpta’s design
	Slide 37: Realizing Āpta’s design
	Slide 38: Realizing Āpta’s design
	Slide 39: Performance Evaluation
	Slide 41: Performance Evaluation
	Slide 42: Āpta Summary

