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Increasing DRAM Faults

Markets - = EE'EJECTRUM DRAM error rates: Nightmare on
How One Piece of Hardware Took Down a — DIMM street
$6 Trillion Stock Market o ande by stucy of DRAM on

DRAM’S Damning Defects—al'ld How DIMM error rates are hundreds to

By Gearoid Reidy, Shoko Oda, Min Jeong Lee, and JToshiro Hasegawa
thousands of times higher than thought - a
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memory error. These devices store management data used across the
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servers, and distribute information such as commands and ID and password

combinations for terminals that monitor trades.

° e NEWS . DRAM errors: from soft to hard
eo®. Google: DRAM error rates vastly higher .
. Every system uses dynamic random access
than prewously thought memory (DRAM), but how good Is it? Bad
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ECCPLOIT: ECC PCs will likely r—’1r— error correction code in the like us to think. Good news: we're learning.
MEMORY VULNERABLE future due to DRAM issues
RAMBIleed TO ROWHAMMER o lin Q) o @ in @ f = A
e B e WU Aeeee e The, ATTACKS AFTER ALL
i ' ' By Lucas Mearian fy By Robin Harms for Storage B &
--— -- - -: ----- - - - -- Where many people thought that high-end servers Senior Reporter, Computerworld 6:26 GMT (17:26 BST) | Topic: Storage

were safe from the (unpatchable) Rowhammer bitflip
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Progression of Reliability Mechanisms
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Progression of Reliability Mechanisms
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Replication for Reliability
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O Full data replica (not ECC code)

(1 Keep Replicas as far apart and disjointas possible

L Tolerate errors arising from anywhere in the
memory path
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For Detection

L Existing ECC, CRC, Parity

O Strong detection-only code
O Other diagnostic capabilities

For Correction
O Relyon replica
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Coherent Replication
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Coherent Replication
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D Coherent \§, Dvé insights
< ierconnect > O Use replica to improve performance
L Route memory requests to nearest replica
XY, Z A, B,C
.......................... Replicas




Coherent Replication

write(A)
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< erconnect > [ Use replica to improve performance
L Route memory requests to nearest replica
‘ ‘ @ Ensure safe access to replica
XY, Z B, C
.......................... Replicas
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O Use replica to improve performance
L Route memory requests to nearest replica
‘ ‘ @ Ensure safe access to replica
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O Use replica to improve performance

interconnect
.v. d Route memory requests to nearest replica

‘ Replica Dir Ctrl ‘ O Ensure safe access to replica
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Coherent Replication
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interconnect

‘ Replica Dir Ctrl ‘
XY Z B, C Coherent Replication
______________________________________________________________________________ 0 Builds on existing cache coherence protocols
............................................................ . O maintain the replicasin sync (for reliability)
B, C X, Y Z El provide coherent access to both replicas during

fault-free operation (for performance)
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O Utilize idle memory

Skewed memory utilization
L 50% of the memory is idle in 90% of the servers

Capacity O Provisioningfor peak
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Capacity overheads?
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L Overheadsapplicableonly as and when
demanded by the application
Capacity

Interface to allocate high-reliability memory
O Hardware-software co-design
Q OS support
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Flexible trade-off between capacity and reliability



Memory
Replication

Summary

Replication for
Reliability

Lowers DUE by
4x over Chipkill

172x over IBM RAIM
11% over Intel Memory Mirroring

On-demand Replication

hardware-software co-design
using OS/compiler support

Coherent Replication
for Performance

Improves performance by

5% - 117% over baselineNUMA
3% - 107% over an improved
Intel mirroring scheme

Paperin ISCA ‘21
Artifacts available

https://github.com/adarshpatil/dve
https://adar.sh/dve
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Function-as-a-Service characteristics

e I FaaS Applications
Function 1 p] e, o .
* Composition of stand-alone functions
ia: Samole Faas a People Recognition . .
(AMIBER clertppeine] st e * DAG invocation sequence

FaaS Functions

e Stateless: No access to state created by previous
Obj store server invocations

o Totonal Faos - * object store backend with a get/put API

| Faa$S execution Infrastructure

* managed by cloud provider

server server server 3 * Scales by adding/removing function instances

-  Runtime orchestrates and load balances




Our proposal: FaaS-DM
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'@‘Faas with Disaggregated Shared Memory
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Hardware caching
Benefit from hardware prefetching and intra-

server 1 e 2 server 3 node coherence

s || || Application transparent caching

[oaz e Implicit data movement using inter-node
o Lo hardware cache coherence
o veescess) Upsousessy] Veeesseeey] Use existing shared memory synchronization
Disaggregated Memory server teChniqueS

Avoids overfetch and critical path writeback
Fig: FaaS with Disaggregated Shared Memory



Open Problems in FaaS-DM

server 1

server 2

server 3

loca
mem

GenZ
NIC

loca
mem

GenZ

NIC

local GenZ
mem NIC
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shared memory
segment

Disaggregated Memory Server

Fig: FaaS-DM logical view

Address mapping and translation

* Sharing the same physical memory region
between independent servers

e Communication/co-ordination between
executing functions

Performance
* Optimizing inter-node coherence protocol

Availability
* Partial system failure (non-fate sharing)



Our approach

server 1 server 2

FaaS func 1 FaaS func 2

PA | |
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workflow driver

Fig: FaaS-DM addressing schematic

N

@ Address mapping and translation
* Extends shared memory inter-process

communication (IPC)
[POSIX API: shm_open, shm_close, mmap]

* Extends annexation process to allow mapping
of FaaS-DM memory segment into FaaS
function VA

* OS's exchange messages via RPC for naming
and identification of FaaS-DM memory
segments [Legoos, 0SDI'18]

* Address translation similar to 2-level page
table [peacT, Hpca 21



Our approach
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'@‘ Performance
e Sharing characteristics of FaaS workloads
* Imposed function execution limits

\ /

@ Availability
* Non-blocking coherence protocol to guarantee forward progress
e Atomic durability and Memory consistency guarantees
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