
A Study of Branch Prediction in Android

Adarsh Patil
Computer Science and Automation

M.Sc (Engg), IISc
Email: adarsh.patil@csa.iisc.ernet.in

I. INTRODUCTION

The worldwide popularity of inexpensive smart phones,
tablets and low power pocket devices has caused a major
shift in computing paradigms. Reliability, availability, con-
nectivity, as well as performance related concerns has be-
come paramount. Mobile platforms have different types of
application physiognomies than those of traditional desktop
applications and pose unique challenges to the architecture
community.

Applications for mobile devices differ from desktop ap-
plications in significant ways. Desktop applications typically
tend to run for long sessions (hours, days) and are much
more feature rich. Hence, these sessions contain a great
deal of iterating and the locality of reference is much more
contained. The feature-richness of these applications means
large working-set sizes of instructions and data. Mobile device
applications on the other hand tend to be focussed for one
purpose rather than being feature-rich and are used in short
spurts, frequently, but for short session durations. Speeding
up startup time (or wakeup time), responsiveness and getting
users back to the activities they were doing when they last shut
down is of paramount importance as today’s modern mobile
Operating Systems offer multi-tasking capabilities just as on
desktop. This leads to low locality of reference, high context
switches and smaller working-set sizes. Also, mobile devices
and applications are mostly used for consumption of content
as compared to authoring content. The 4 key requirements
for mobile devices are: high performance for multimedia
functions, energy/power efficiency, small size and low design
complexity.

We focus on one specific issue that has long been con-
sidered an important issue for performance optimization of
state-of-the-art processors - control flow prediction. Improving
accuracy of branch prediction improves performance due to
correct speculative path execution and reduces power con-
sumed due to fewer squashing of mis-predicted speculative
executions. The Operating System affects control flow pre-
dictability as it introduces additional user/OS branch aliasing
in branch predictor tables. We study this negative impact
of kernel branches on branch prediction. As a motivating
example, Figure 1 shows distribution of Kernel and User
Instructions in typical mobile applications. The label on each
bar indicates the percentage of Kernel instruction executed in
the duration of the application. Android application take user
interactions to all new levels. The unpredictable user behaviour
for interactive mobile applications can further exacerbate the
branch misprediction rates.

A. New features in Mobile Devices stress branch prediction

Today’s mobile devices are equipped with several new
features that make them attractive and more capable de-
vices.Firstly, the ability to multi-task and switch between ap-
plications without closing their state, similar to the minimize in
desktop applications. Such context switches can rarely be pre-
dicted and incur heavy squashing of instructions in the pipeline
due to context switch. This frequent context switch triggers
execution of kernel code which leads to poor performance
of branch prediction and may need invalidation of branch
prediction tables. Such new capabilities aggravate an already
existing problem. Secondly, recent releases of android allow
applications to run in background. This introduces further
complexities in branch prediction and fragmentation of the
predictor tables which are indexed with Program Counters. We
do not study this type of application switching behaviour and
background application activity as it is difficult to simulate and
existing benchmarks have not incorporated such behaviours
yet. We will make the case with running single application
simulation in foreground without any other applications run-
ning in the background.

B. Related Work

In [1] Huang et. al present a diverse application set as
the Moby benchmark to study architectural properties of
android applications and evaluate Mobys micro-architecture
independent features (instruction mix, working set size, data
and instruction locality, and binary execution behaviour) How-
ever we focus on branch prediction specifically and aim to
understand the interplay for User and Kernel mode branches in
Android ecosystem. In [2] Li / Sivasubramanium et. al studied
the branch history interference between user/OS branches for
desktop applications. They propose new OS-aware control flow
prediction techniques to alleviate the destructive impact of
this interference for desktop applications. As described above
the characteristics of mobile applications differ from desktop
applications and the hardware used in both has different char-
acteristics and design properties. To the best of our knowledge
a similar study for mobile applications has not been done
previously.

II. KEYWORDS

Branch Prediction, Mobile Applications, Android ecosys-
tem, gem5, Moby, OS-aware Branch Prediction



III. BACKGROUND

A. Android and Dalvik VM

Android is described as a mobile operating system, initially
developed by Android Inc. Android was sold to Google in
2005. Android is based on a modified Linux 2.6 kernel.
Google, as well as other members of the Open Handset
Alliance (OHA) collaborated on Android design, development
and distribution. Currently, the Android Open Source Project
(AOSP) is governing the Android maintenance and develop-
ment cycle

Compared to a Linux 2.6 environment though, several drivers
and libraries have been either modified or newly developed
to allow Android to run as efficiently and as effectively as
possible on mobile devices. The focus has always been on
optimizing the infrastructure based on the limited resources
available on mobile devices. To complement the operating
environment, an Android specific application framework was
designed and implemented.

Android based systems utilize their own virtual machine
known as the Dalvik Virtual Machine (DVM). The DVM uses
special byte-code, hence native Java byte-code cannot directly
be executed on Android systems. The DVM implementation
is highly optimized in order to perform as efficiently and as
effectively as possible on mobile devices that are normally
equipped with a rather modest CPU subsystem, limited mem-
ory resources, no OS swap space, and limited battery capacity.
The DVM has been implemented in a way that allows a device
to execute multiple VMs in a rather efficient manner. It also
has to be pointed out that the DVM relies on the modified
Linux kernel for any potential threading and low-level memory
management functionalities.

Fig. 1: User and Kernel Instructions

B. Target Platform and ISA

ARM represents a 32-bit reduced instruction set computer
(RISC) instruction set architecture, x86 systems are primarily
based on the complicated instruction set computer (CISC) ar-
chitecture. In effect we can say that ARM (RISC) is executing
simpler (but more) instructions compared to an x86 (CISC)
system. In mobile devices memory is at a premium due to
size, power and cost constraints. ARM addresses these issues
by providing a 2nd 16-bit instruction set (labelled thumb)
that can be interleaved with regular 32-bit ARM instructions.
This additional instruction set can reduce the code size by
up to 30% with some performance limitations. Hence this

thumb instruction set is a compromise between performance
and power.

Today, there are basically 4 major chip sets being deployed
in Android devices. On the one side there is ARM Cortex-
A8 architecture based processors with Vendor tweaks like
Qualcomm Snapdragon, Texas Instruments OMAP, Samsung
designed Hummingbird chipset and on the other side the
Intel x86 based low power Atom processors. However, the
competition and trend in the market has seen number of ARM
devices explode compared to traditional x86 based devices.
This is because compared to x86 processors, the ARM design
reveals a strong focus on lower power consumption, which
again makes it suitable for mobile devices. Hence, throughout
the rest of this work we primarily focus on ARM based
processors and study the components in a typical ARM (RISC)
processor.

C. Branch Predictors

The processor contains program flow prediction hardware,
also known as branch prediction. The processor simulated
implements detailed ARMv7-A architecture profile [10]. It
contains program flow prediction hardware, also known as
branch prediction. With program flow prediction disabled,
all taken branches incur a 13-cycle penalty. With program
flow prediction enabled, all mispredicted branches incur a 13-
cycle penalty. To avoid this penalty, the branch prediction
hardware operates at the front of the instruction pipeline. An
unpredicted branch executes in the same way as a branch that
is predicted as not taken. Incorrect or invalid prediction of
the branch prediction or target address causes the pipeline to
flush, invalidating all of the following instructions. Within this
definition there are certain instructions that will be predicted
and some which will not be predicted. The following are some
details of the branch prediction methodology used in evaluation
later.

1) Predicted instructions: The following are the instruc-
tions that the Branch Predictor predicts:
B, BL, BLX, BX, LDR with PC destination, LDM with PC
in the register list, PC-destination data-processing operations
i.e.ADD, MOV, CPY with being PC-destination register

2) Nonpredicted Instructions: The following are the
instructions that are not predicted:

- Instructions that can be used to return from an exception
- Instructions that restore the CPSR from memory or from
the SPSR

- PC-destination data-processing instructions with imme-
diate values

- BXJ

3) Tournament Branch Prediction: To minimize the branch
penalties, the branch predictor in the processor uses a tour-
nament branch prediction algorithm as proposed by Scott
McFarling [11]. The algorithm maintains two history tables,
Local and Global, and the table used to predict the outcome
of a branch is determined by a Choice predictor. The local
predictor is a two-level table which records the history of
individual branches. It consists of a 2048 entries. Each entry is
a 2-bit saturating counter. The value of the counter determines



whether the current branch is taken or not taken. The global
predictor is a single-level, 8192-entry branch history table.
Again, each entry here a 2-bit saturating counter; the value
of this counter determines whether the current branch is taken
or not taken. The choice predictor records the history of the
local and global predictors to determine which predictor is the
best for a particular branch. It has a 8192-entry branch history
table. Each entry is a 2-bit saturating counter. The value of the
counter determines if the local or global predictor is used.

The processor also contains a Branch Table Buffer (BTB)
of 2048 entries tagged by 18 bits. The BTB acts as a buffer for
the choice predictor and aids quick lookup for the tournament
prediction. The complete specifications of this is summarized
in
Table I below.

IV. EVALUATION METHODOLOGY

We use the Moby Mobile Benchmark suite [1] to study
architectural characteristics of Android applications. We run
this benchmark on gem5 simulator in the Full System Cycle
Accurate mode for the ARM architecture. The rest of the sec-
tion describes the details of the benchmark and modifications
made to the gem5 simulator to collect further statistics. Table
1 gives the architectural simulation parameters under which
this was studied. These specifications were used to match a
typical ARM community supported development platform like
the PandaBoard [7]. The study of optimum trade-off numbers
for these parameters (cache size, associativity, block size, i/d
cache split) used here for simulation of the android ecosystem
is beyond the scope of this work. Such work has been carried
out in the HPC lab earlier [3] and we derive these numbers
from the conclusion of the study.

TABLE I: Simulation Parameters Used in Experiments

Parameter Value

CPU O3 CPU [9]
L1 i-cache 32KB / 4 way set assoc / 64 Byte line size
L2 d-cache 32KB / 4 way set assoc / 64 Byte line size
L2 cache 512KB / 16 way set assoc / 64 Byte line size
iTLB / dTLB 128 entries each
Main Memory 256MB LP DDR2
Branch Predictor Type Tournament
BTB Entries 2048
Global Predictor Size 8192 (2 bit)
Local Predictor Size 2048 (2 bit)
Choice Predictor Size 8192
Choice Counter Bits 2
RAS Size 16

A. Simulator

We use the gem5 simulator and the hardware performance
counters provided by ARM processors to evaluate Mobys
micro-architectural features. However we found the counters
provided were insufficient to perform detailed study as needed.
The gem5 simulator was instrumented with several additional
counters at various points. This required a rewrite of the Stats
class of gem5 and additional helper classes were included.
To calculate the branch-prediction effectiveness the following
additional counters were added.

- number of continuous instructions executed in user /
kernel mode

- number of context switches
- number of branch instructions in user / kernel mode
- number of branches per burst in user / kernel mode
- number of incorrect predictions in user /kernel mode
- number of instructions squashed from pipeline per mis-
prediction in user / kernel mode

The modified gem5 simulator was then complied and built.
This instrumented version of gem5 was used throughout for
simulations.

B. Benchmarks

The moby benchmark is composed of 10 mobile appli-
cations of diverse classes such as web browser, documents,
online shopping, email, audio, video, maps, games etc. Moby
has been ported onto the gem5 simulator. The benchmark
consists of popular application from the Google Play Store
except the BBench browser application. We defer the reader to
the related Moby literature [1] to note the applications and thier
criteria of selection. Another notable reason for choosing this
benchmark is that it eliminates the non-deterministic replay
and overhead of replaying user interaction through execution
of activities by specifying their inputs (user-action) manually
through command-line arguments.

Moby benchmark suite is provided as a Ice Cream Sand-
wich (2.6.35) kernel image [8], the raw disk image and a SD
card image. The SD Card was auto-mounted into the target
environment in gem5 using appropriate scripts as specified by
the benchmark. Further, to startup each application benchmark
on bootup of the target environment each application .rc
script (init script) was passed to the simulator. Given that
the benchmark takes several days to complete full system
simulation several jobs were queued back to back and the
targed system was reset to flush cache, pipelines and counters.

V. EXPERIMENTAL RESULTS

A. Instruction Flow

The flow of instructions executed by most mobile applica-
tions exhibit complex behaviour. Mobile applications are heavy
Graphics based applications and have high number of user
interactions which leads to combinatorially large number of
execution paths possible for the instruction flow. Adding to
this, android applications are written in high level language
(Java) for portability which is then translated by Dalvik VM
to produce optimized byte code adding to the complexity. The
applications invoke several libraries and binaries during flow
of execution. As Huang et. al [1] point out, the phases of
execution in Moby applications can be characterized into 3
groups: Java-language related, C-language related, and system
related. We categorize the first two of these as user mode and
the system related phases as kernel mode execution. There is
different degrees interleaving of execution and burst lengths
of these 3 phases in Moby applications. Due to this variable
instruction locality, branch prediction accuracy are largely
affected. Figure (2) shows the lengths of kernel mode bursts
(in millions of instructions) for 3 different applications. The
first 100 bursts are perfectly co-related and this corresponds to
the boot time of the device.

1Percent of all branch instructions that are conditional



TABLE II: Execution Statistics

Application

To
ta

l
In

st
ru

ct
io

ns
(M

)

K
er

ne
l

In
st

ru
ct

io
ns

(%
)

C
on

te
xt

Sw
itc

he
s

(M
)

%
of

B
ra

nc
he

s

%
of

co
nd

iti
on

al
br

an
ch

es
1

Conditional Branch Statistics
% overall incorrect User Mode Kernel Mode

Number of Branches (M / %) % incorrect Number of Branches (M / %) % Incorrect
360Buy 5331 13.06 0.62 22.95 68.89 11.16 728 (86.34 %) 3.87 115 (13.66 %) 57.20
Adobe 3198 12.43 0.58 21.73 69.70 10.03 445 (91.89 %) 6.63 39 (8.11 %) 48.46
Baidumap 1231 16.43 0.58 25.70 67.63 11.34 192 (89.84 %) 6.83 22 (10.16 %) 51.22
BBench 4956 11.16 0.72 23.36 66.71 12.50 686 (88.87 %) 8.42 86 (11.13 %) 45.12
FrozenBubble 660 11.00 0.76 23.67 69.28 8.82 100 (92.53 %) 4.39 8 (7.47 %) 63.67
K9Mail 2179 10.07 0.78 19.72 68.83 11.32 258 (87.28 %) 1.53 38 (12.72 %) 78.46
KingSoft 5854 17.65 0.67 26.03 66.99 12.58 853 (83.53 %) 4.48 168 (16.47 %) 53.65
MXPlayer 9715 3.79 0.72 8.49 74.31 7.14 567 (92.76 %) 2.21 44 (7.24 %) 70.22
Netease 4348 8.81 0.54 21.72 69.02 10.82 610 (93.62 %) 6.89 42 (6.38 %) 68.55
Sinaweibo 4366 15.98 0.64 25.84 66.40 12.60 653 (87.12 %) 6.50 96 (12.88 %) 53.85
TTPod 6059 10.12 0.75 23.70 66.95 12.36 850 (88.43 %) 4.85 111 (11.57 %) 69.72

Fig. 2: Burst Pattern of Kernel Instructions

Fig. 3: Burst Distribution of Kernel Instructions

Different types of branch instructions indirectly reveal
the complexity of programs and their demands on branch
predictors. As shown in Table II, branches account for about
22% of total instructions on an average where about 70% of
these branches are conditional branch. Conditional branches
may result in executing an erroneous path and consequently
require out-of-order processors to roll back and squash sev-
eral instructions. The high percentages of conditional branch
instructions is likely to trigger many mispredictions with large
penalties, which will affect the overall performance. To be able
to better utilize out-of-order processors and exploit instruction
level parallelism branch prediction accuracy plays a pivotal
role.

(a) Incorrect Prediction vs % of Branch Instructions

(b) Incorrect Prediction vs Burst Length

Fig. 4: Trend of Kernel Incorrect Prediction

B. Incorrect Branch Predictions

We observe an average of 60% incorrect branch predic-
tions in Kernel Mode as compared to 5.5% incorrect branch
predictions in User Mode. This huge skew can be attributed
to very low Kernel instruction execution numbers (on aver-
age 11.86%). The branch prediction mechanism is unable to
observe and maintain correlation in the kernel mode bursts
which are few and far spaced in the instruction execution
flow. However this high incorrect branch prediction leads to
instruction squashes as speculative instructions are executed
along the mispredicted path. We also observe the number to
be on an average 57 instructions per kernel burst (including the
bootup time). This number is significantly high and represents
wasted executions along this path. Figure 3 shows the average
kernel mode burst distribution between sequential execution,
instructions executed on correct and incorrect branch specula-



tions.

Based on the statistics from Moby applications, the plot
in Figure 4(a) shows the percentage of Kernel Mode In-
correct Branch Prediction versus the percentage of kernel
branches executed. Similarly Figure 4(b) shows the percentage
of Branch Prediction versus the average kernel mode burst
length. This further supports our claim that as number of kernel
branch instruction increase mispredictions decrease. Similarly,
as number of kernel bursts size increase the mispredictions
decrease. However the decrease is only linear. We expect that
this linear trend would be insufficient to cope with additional
context switches that will be added due to the new features in
upcoming android releases (refer Section I) going forward.

VI. CONCLUSION

In this work, we have studied the instruction flow in
Android ecosystem and the time spent in execution in the User
and Kernel mode. We studied the distribution of branches in
User and Kernel mode. We also quantified the wasted work in
mispredicted branches. Power consumption being a first rate
design parameter in mobile devices, this wasted effort can be
avoided with better branch prediction techniques. The trend of
mispredictions with respect to kernel mode burst duration and
time spent in kernel mode execution was also studied. This
study can prove invaluable to hardware designers trying to
improve performance of Android on ARM devices. Although
tournament branch prediction maintain 2 context using the
global and local tables it is not effective for mobile applications
where the kernel executions are few and far spaced in the
instruction execution flow. Thus, the proposed techniques by
Li, Sivasubramanium et. al about using OS aware branch
prediction could be used to reduce mispredictions rates in
Mobile devices.

In the process we authored several new hardware statistics
for the gem5 simulator which can be used in a general
simulation exercise to understand branch prediction statistics.

ACKNOWLEDGMENT

The author would like to thank Prof. R Govindarajan and
the HPC lab for the resources to run the simulations and the
timely thoughtful ideas.

REFERENCES

[1] Huang, Yongbing, Zhongbin Zha, Mingyu Chen, and Lixin Zhang.
”Moby: A Mobile Benchmark Suite for Architectural Simulators.”

[2] Li, Tao, Lizy Kurian John, Anand Sivasubramaniam, Narayanan Vi-
jaykrishnan, and Juan Rubio. ”Understanding and improving operating
system effects in control flow prediction.” In ACM Sigplan Notices,
vol. 37, no. 10, pp. 68-80. ACM, 2002.

[3] Vishaal Mohan under guidance of Prof. R. Govindarajan . ”Study of
Mobile Benchmark characteristics on a full-system simulator”, July
2014.

[4] Bornstein, D., Dalvik VM Internals, Google I/O Developer Conference,
2008

[5] Brady, P., Android Anatomy and Physiology”, Google I/O Developer
Conference, 2008

[6] http://gem5.org/
[7] Pandaboard System Reference Manual
[8] http://developer.android.com/about/versions/android-4.0-highlights.

html

[9] http://www.m5sim.org/O3CPU
[10] ARM Technical Reference Manual (Coretex-A8)

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0344k/
DDI0344K cortex a8 r3p2 trm.pdf

[11] McFarling, Scott. Combining branch predictors. Vol. 49. Technical
Report TN-36, Digital Western Research Laboratory, 1993.

[12] H. Kopka and P. W. Daly, A Guide to LATEX, 3rd ed. Harlow, England:
Addison-Wesley, 1999.


